UNNS Constants (Current Canon)

1. Limit Ratio Constants

• **Definition:** For a linear UNNS with dominant root α ,

$$C_{ ext{ratio}} = \lim_{n o \infty} rac{u_{n+1}}{u_n} = lpha.$$

- Examples:
 - Fibonacci UNNS → Golden Ratio φ.
 - Eisenstein cubic UNNS $\rightarrow \omega$ -related constants.
- · Significance: Marks the asymptotic growth geometry of each UNNS nest; foundational for embeddings into $\mathbb{Z}[i]$, $\mathbb{Z}[\omega]$, etc.

2. Gauss-Jacobi-Eisenstein Constants

- Definition: Derived from Gauss sums, Jacobi sums, and Eisenstein sums tied to UNNS recurrences modulo primes.
- Examples:

 - Quadratic Gauss sum $G(\chi)=\epsilon\sqrt{p}$. Jacobi sum relations: $J(\chi_1,\chi_2)=rac{G(\chi_1)G(\chi_2)}{G(\chi_1\chi_2)}$.
- Significance: Provide explicit arithmetic weights for UNNS lattice embeddings; connect primes, residues, and cyclotomic UNNS layers.

3. DEC/FEEC Edge Constants (c_1, c_2, C)

- Definition: Norm-equivalence and projection constants appearing in the convergence analysis of UNNS → Maxwell mappings.
- Canonical form:

$$\|c_1\|F_h\|\leq \|d_hA_h\|\leq c_2\|F_h\|,\quad \stackrel{\triangleright}{C}=rac{c_2}{c_1}.$$

Significance: Make the stability/convergence of UNNS discretizations explicit. Their numerical value depends on mesh regularity but are structurally arithmetically bounded by UNNS constants.

4. UNNS Paradox Index (UPI)

· Definition: A stability threshold measuring symbolic instability:

$$\mathrm{UPI} = \frac{D \cdot R}{M + S},$$

where D=recursion depth, R=self-reference rate, M=morphism divergence, S=memory saturation.

- Thresholds:
 - UPI < 1: Safe.
 - $1 \le UPI \le 3$: Transitional.
 - $\mathrm{UPI} > 3$: Unstable.
- Significance: Analogous to CFL condition in PDEs; quantifies paradox pressure in recursive substrates.

5. Gödel Constant

• **Definition**: The inevitability of undecidable statements in recursive nests with $D \geq 2, R > 0$.

$$G(\mathcal{U}): \exists (P_n) \quad P_n \text{ undecidable in } \mathcal{U}.$$

 Significance: Structural invariant of recursion — no UNNS can be paradox-free; incompleteness is a built-in constant.

6. Prime Density Constant (PNT Constant)

• Definition: Resonance density of primes in UNNS nests:

$$\pi(x) \sim \frac{x}{\log x}.$$

- Interpretation in UNNS: Primes are resonance spikes in recursive substrates; their thinning (density $\sim 1/\log x$) is a universal constant law.
- Significance: Encodes prime distribution as an emergent stability law of recursion.

7. Nest Depth Constant (D)

- Definition: The minimal number of initial values required for a UNNS to be well-defined.
- Significance: A structural invariant of the recurrence (like order in differential equations).

8. Coefficient Ring Constant ($R_{ m UNNS}$)

- Definition: The smallest algebraic integer ring that contains all coefficients of the UNNS.
- Examples: Z, \mathbb Z\[i], \mathbb Z\[\omega].
- Significance: Anchors UNNS to cyclotomic/arithmetic lattices.

Summary

So far, we have 8 constants/invariants forming the disciplinary backbone of UNNS:

- 1. Limit Ratios (ϕ, ω, α) .
- 2. Gauss/Jacobi/Eisenstein constants (cyclotomic sums).
- 3. Edge constants c_1, c_2, C (DEC/FEEC convergence).
- 4. Paradox Index (UPI) (instability threshold).
- 5. Gödel Constant (unavoidable incompleteness).
- 6. Prime Density Constant (PNT) $(x/\log x)$ law in UNNS).
- 7. Nest Depth Constant D (recurrence order).
- 8. Coefficient Ring Constant R_{UNNS} (arithmetic anchor).

• Together, these move UNNS from "pattern gallery" to a **discipline with invariants**, **thresholds**, **and constants**, just like physics has universal constants.