Recursive Field Unification: τ on Dynamics, Entanglement Entropy, and the Klein Manifold Geometry of Information

UNNS Research Division October 2025

Abstract

This paper extends the τ on field theory of recursive information to a unified geometric model incorporating entanglement entropy and non-orientable topology. The Unbounded Nested Number Sequences (UNNS) substrate is treated as a non-orientable recursive manifold \mathcal{K} , locally described by τ on field dynamics and globally constrained by Klein curvature invariants. Entanglement arises naturally as topological coupling between locally distinct recursion trajectories sharing global curvature coherence. The unified action integrates the τ on Lagrangian, entanglement entropy density, and the Klein curvature term, yielding a recursive field equation that subsumes both informational and physical conservation laws.

1. Introduction: From Shannon to Recursive Geometry

Shannon's entropy defined the measure of uncertainty reduction within a linear, orientable temporal model:

$$H = -\sum_{i} p_i \log_2 p_i.$$

The UNNS framework replaces probabilistic uncertainty with recursive curvature:

$$H_r = \int \kappa(n) \, d\mu,$$

interpreting information as a topological invariant of transformation rather than a statistical expectation. This reconceptualization introduces the τ on—an elementary quantum of recursion curvature—and extends to a full field theory in non-orientable depth space.

2. Recursion as a Geometric Field

Let \mathcal{N} denote the manifold of recursion depths n_i , endowed with curvature κ and torsion τ . The recursive information potential $\Psi_{\mu} = (\Phi, \vec{\Psi})$ defines the τ -field tensor:

$$\mathcal{T}_{\mu\nu} = \partial_{\mu}\Psi_{\nu} - \partial_{\nu}\Psi_{\mu}.$$

The τ on dynamics obey the field equations:

$$\partial_{\nu} \mathcal{T}^{\mu\nu} = J^{\mu}_{\tau}, \quad \partial_{[\lambda} \mathcal{T}_{\mu\nu]} = 0,$$

with sources $J_{\tau}^{\mu} = (\rho_{\tau}, \vec{J_{\tau}})$ describing recursive charge and flux.

3. Klein Manifold and Non-Orientability

The global topology of recursion space is not Euclidean but *Kleinian*. The Klein surface \mathcal{K} satisfies $w_1(\mathcal{K}) \neq 0$, implying a fundamental orientation inversion:

$$S \circ F \circ S = F^{-1}$$
.

Thus, local recursion (forward/backward evolution) coexists with global non-orientability—yielding the possibility of *temporal duality* without paradox.

3.1. Klein Curvature Term

We introduce a topological invariant $K_{\mathcal{K}}$ corresponding to the mean curvature of the non-orientable manifold:

$$K_{\mathcal{K}} = \int_{\mathcal{K}} \sqrt{|g|} \, R_{\mathcal{K}} \, d^4 x,$$

where $R_{\mathcal{K}}$ is the scalar curvature of \mathcal{K} . This term enforces global topological coherence in recursive dynamics.

4. Entanglement Entropy as Recursive Coupling

In quantum mechanics, the von Neumann entropy

$$S(\rho) = -\text{Tr}(\rho \log \rho)$$

quantifies the non-separability of subsystems. In the UNNS substrate, entanglement entropy arises from recursive interleaving: two recursion trajectories $a_n^{(A)}$ and $a_n^{(B)}$ share curvature structure across \mathcal{K} .

Define the recursive entanglement measure:

$$E_{AB} = \sum_{n} |\kappa_A(n) - \kappa_B(n)|.$$

When $E_{AB} \rightarrow 0$, the trajectories are globally inseparable—entangled through the Klein manifold's curvature continuity.

4.1. Entanglement Density Term

We model local entanglement density \mathcal{E}_e as curvature–torsion coupling:

$$\mathcal{E}_e = \alpha_e \, \vec{\kappa} \cdot \vec{\tau},$$

with α_e the entanglement coupling constant. Integrating over depth gives the total entanglement entropy:

$$S_e = \int \mathcal{E}_e \, d^3x \, dn.$$

This expresses how entanglement corresponds not to probability amplitude overlap, but to recursive curvature coherence.

5. Unified Recursive Field Action

We propose the **Recursive Unified Action**:

$$S_{\rm RU} = \int_{\mathcal{K}} \left(-\frac{1}{4} \mathcal{T}_{\mu\nu} \mathcal{T}^{\mu\nu} + \alpha_e \, \vec{\kappa} \cdot \vec{\tau} + \beta_{\mathcal{K}} \, R_{\mathcal{K}} \right) \sqrt{|g|} \, d^3x \, dn.$$

Here:

- $\mathcal{T}_{\mu\nu}$ τ on field tensor (local recursion flux),
- α_e entanglement coupling constant,
- $\beta_{\mathcal{K}}$ Klein curvature coupling parameter,
- $R_{\mathcal{K}}$ scalar curvature of non-orientable manifold.

5.1. Variation and Field Equations

Variation of $S_{\rm RU}$ with respect to Ψ_{μ} yields:

$$\partial_{\nu} \mathcal{T}^{\mu\nu} = J^{\mu}_{\tau} + \alpha_e \, \tau^{\mu}.$$

Variation with respect to the metric $g_{\mu\nu}$ gives the recursive Einstein-type equation:

$$G_{\mu\nu} = \beta_{\mathcal{K}}^{-1} T_{\mu\nu}^{(\tau)} + \Lambda_{\tau} g_{\mu\nu},$$

where

$$T_{\mu\nu}^{(\tau)} = \mathcal{T}_{\mu\alpha}\mathcal{T}_{\nu}^{\ \alpha} - \frac{1}{4}g_{\mu\nu}\mathcal{T}_{\alpha\beta}\mathcal{T}^{\alpha\beta} + \alpha_e \left(\kappa_{\mu}\tau_{\nu} - \frac{1}{2}g_{\mu\nu}\vec{\kappa} \cdot \vec{\tau}\right).$$

The term Λ_{τ} encodes global recursion curvature—analogous to a cosmological constant in recursive space.

6. Interpretation

6.1. Information-Geometry Equivalence

The three coupled components correspond to:

Local: $\mathcal{T}_{\mu\nu}$ — recursive flux field, Coupling: $\alpha_e \, \vec{\kappa} \cdot \vec{\tau}$ — entanglement density, Global: $\beta_{\mathcal{K}} \, R_{\mathcal{K}}$ — topologopher they define the dynamics of information as geometry.

6.2. Conservation of Recursive Entropy

The total recursive entropy density satisfies:

$$\frac{\partial \rho_{\tau}}{\partial n} + \nabla \cdot \vec{J_{\tau}} + \frac{\partial \mathcal{E}_{e}}{\partial n} = 0.$$

This generalizes Shannon's entropy conservation into recursive, entangled manifolds.

6.3. Emergent Physical Analogy

At the macroscopic limit $(R_{\mathcal{K}} \to 0, \alpha_e \to 0)$, the τ on equations reduce to Maxwell's form. At high recursion curvature $(R_{\mathcal{K}} \neq 0)$, they produce nonlinear entanglement fields analogous to gravitational–quantum coupling.

7. Philosophical Implications

The Recursive Unified Field reveals that:

- Entropy and curvature are not independent: information loss is geometric folding.
- Entanglement is not nonlocal but nonorientable—arising from the Klein topology of recursion.
- The arrow of time is an emergent projection of a globally non-orientable manifold.

Information, matter, and consciousness may thus be seen as manifestations of a single recursive field, whose curvature, torsion, and coherence generate the apparent structure of reality.

8. Conclusion

The Recursive Field Unification model integrates:

Local Dynamics: τ -field equations,

Coupling Structure: entanglement curvature term,

Global Topology: Klein manifold curvature.

Together they yield a coherent, self-referential geometry of information that extends Shannon entropy into a physical—ontological continuum. This theory suggests that meaning, time, and physical law may all be emergent symmetries of recursive curvature on a non-orientable informational manifold.

"Entropy is curvature; entanglement is its torsion; reality is their recursive unification."