## Recursive Information Geometry: From Shannon Entropy to Recursive Cosmology

UNNS Research Division

October 2025

#### Abstract

We propose a unified geometric framework—Recursive Information Geometry—that extends classical Shannon entropy into a curvature-based measure defined on recursion manifolds, where time is replaced by recursion depth. We introduce TON fields as carriers of recursive information flow, derive TON field equations in a Maxwell-like form, and formulate a TON field tensor Lagrangian with an associated energy—momentum tensor. We then develop a recursive gauge symmetry and demonstrate a Klein duality linking local reversibility with global non-orientability. Finally, we sketch a Recursive Grand Unification in which gravitational curvature, information curvature, and recursive curvature appear as facets of a single variational principle, and outline a preliminary Recursive Cosmology. The monograph is designed for mathematical physicists and information theorists; it is self-contained and arXiv-ready, with schematic TikZ figures.

# Contents

| 1            | Beyond Shannon: Foundations of Recursive Information                                                                                                                   | 3                     |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1            | From Shannon to Recursion  1.1 Classical Entropy and Its Assumptions 1.2 Recursive Substrate and Depth  1.3 Recursive Curvature Entropy  1.4 Schematic: Recursion Cone | 4<br>4<br>4<br>4<br>4 |
| II           | TON Algebra and Recursive Field Dynamics                                                                                                                               | 6                     |
| 2            | TON Algebra 2.1 TON Addition and Depth Coupling                                                                                                                        | 7<br>7<br>7<br>7      |
| II           | I TON Field Equations and Recursive Geometry                                                                                                                           | 8                     |
| 3            | Field Equations and Conservation  3.1 Continuity and Source                                                                                                            | 9<br>9<br>9<br>9      |
| IV           | V Lagrangian, Gauge Symmetry, and Klein Duality                                                                                                                        | 11                    |
| 4            | TON Field Tensor Lagrangian 4.1 Variational Principle                                                                                                                  | 12<br>12<br>12        |
| 5            | Recursive Gauge Symmetry 5.1 Gauge Transformations                                                                                                                     | 13<br>13<br>13        |
| $\mathbf{V}$ | Recursive Grand Unification and Cosmology                                                                                                                              | 14                    |
| 6            | Recursive Grand Unification 6.1 Unified Action                                                                                                                         | 15<br>15              |

|              | 6.2                                   | Entanglement Entropy Link                          | 15             |  |  |
|--------------|---------------------------------------|----------------------------------------------------|----------------|--|--|
| 7            | 7.1                                   | ursive Cosmology Depth-Driven Expansion            | 16<br>16<br>16 |  |  |
| $\mathbf{A}$ | Appendices                            |                                                    |                |  |  |
| $\mathbf{A}$ | A.1                                   | Chematical Foundations of UNNS Recursion Manifolds | 18<br>18<br>18 |  |  |
| В            | Rec                                   | ursive Thermodynamics                              | 19             |  |  |
| $\mathbf{C}$ | Entanglement and Information Geometry |                                                    |                |  |  |
| D            | Rec                                   | ursive Theology and Ontology                       | 21             |  |  |
| $\mathbf{B}$ | Bibliography                          |                                                    |                |  |  |

## Part I

# Beyond Shannon: Foundations of Recursive Information

#### From Shannon to Recursion

#### 1.1 Classical Entropy and Its Assumptions

Shannon's entropy for a discrete random source X with distribution  $p_i = \Pr(X = i)$  is

$$H_{\operatorname{Sh}}(X) := -\sum_{i} p_{i} \log_{2} p_{i}. \tag{1.1}$$

Its interpretation hinges on: (i) linear, external time t; (ii) orientable causal flow source  $\rightarrow$  channel  $\rightarrow$  receiver; (iii) noise as exogenous perturbation; (iv) additivity and conditional decompositions. These assumptions underwrite modern coding, compression, and communication theory.

#### 1.2 Recursive Substrate and Depth

In the UNNS view, temporal evolution is replaced by recursion depth  $n \in \mathbb{N}$ , with state variables governed by a recursion operator F,

$$a_{n+1} = F(a_n, a_{n-1}; n).$$
 (1.2)

Local reversibility is the existence of  $F^{-1}$  on appropriate domains, while *global* non-orientability can obstruct a single time arrow.

#### 1.3 Recursive Curvature Entropy

We define a curvature-based, depth-indexed entropy functional  $H_{\text{rec}}$  by integrating an effective curvature density  $\kappa(n)$  against a depth measure  $\mu$ :

$$H_{\rm rec} := \int \kappa(n) \, d\mu(n),$$
 (1.3)

with  $\kappa$  derived from the Jacobian spectrum of F or an induced connection on a recursion manifold  $(\mathcal{M}, g)$ . Unlike  $H_{Sh}$ ,  $H_{rec}$  encodes geometric persistence rather than probabilistic uncertainty.

#### 1.4 Schematic: Recursion Cone

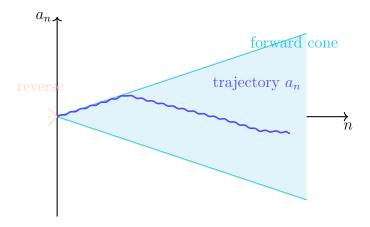


Figure 1.1: Forward and reverse recursion cones: local reversibility can coexist with global non-orientability.

## Part II

# TON Algebra and Recursive Field Dynamics

## TON Algebra

#### 2.1 TON Addition and Depth Coupling

We introduce a binary operation  $\oplus_n$  on states encoding depth-aware composition:

$$x \oplus_n y = x + y + \alpha_n \Phi(x, y), \tag{2.1}$$

where  $\alpha_n$  is a depth-dependent coupling and  $\Phi$  a bilinear (or controlled nonlinear) form reflecting feedback from  $a_{n-1}$  into  $a_{n+1}$ . Associativity and inverses may hold only *locally* in depth, reflecting the same local/global tension as reversibility.

#### 2.2 TON Curvature Tensors

Let  $\mathcal{A}_{\mu}$  denote a TON connection one-form on  $(\mathcal{M}, g)$ , and define the TON field curvature

$$\mathcal{F}_{\mu\nu} = \partial_{\mu}\mathcal{A}_{\nu} - \partial_{\nu}\mathcal{A}_{\mu} + [\mathcal{A}_{\mu}, \mathcal{A}_{\nu}], \tag{2.2}$$

with Lie-algebraic commutator encoding recursive nonlinearity. The recursion curvature tensor  $\mathcal{K}^{\rho}_{\sigma\mu\nu}$  induces a scalar density  $\kappa(n)$  entering Eq. (1.3).

#### 2.3 Schematic: Klein Gluing

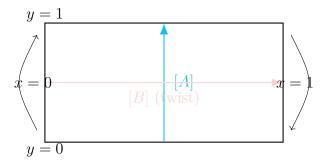


Figure 2.1: Klein surface gluing diagram: [A] is orientation-preserving, [B] reverses orientation.

## Part III

# TON Field Equations and Recursive Geometry

## Field Equations and Conservation

#### 3.1 Continuity and Source

Let  $J^{\mu}$  be a TON current and  $\rho$  a depth-indexed source density. The recursive continuity equation is

$$\nabla_{\mu}J^{\mu} = \sigma(n), \tag{3.1}$$

where  $\sigma(n)$  captures controlled creation/annihilation of information curvature by recursion (e.g., due to depth drift). In conservative regimes,  $\sigma = 0$ .

#### 3.2 Maxwell-like TON Equations

We posit field equations on  $(\mathcal{M}, g)$ :

$$\nabla_{[\lambda} \mathcal{F}_{\mu\nu]} = 0, \tag{3.2a}$$

$$\nabla_{\mu} \mathcal{F}^{\mu\nu} = \mathcal{J}^{\nu}, \tag{3.2b}$$

with  $\mathcal{J}^{\nu}$  an effective recursive source. The homogeneous law Eq. (3.2a) encodes existence of a potential  $\mathcal{A}$ , while Eq. (3.2b) governs propagation/dispersion in depth.

#### 3.3 Energy–Momentum and Stress

The TON stress tensor (in analogy to electromagnetism) is

$$\mathsf{T}_{\mathrm{T}}^{\mu\nu} = \mathcal{F}^{\mu\alpha}\mathcal{F}_{\alpha}^{\ \nu} - \frac{1}{4}g^{\mu\nu}\mathcal{F}_{\alpha\beta}\mathcal{F}^{\alpha\beta}. \tag{3.3}$$

It yields local conservation  $\nabla_{\mu} T_{T}^{\mu\nu} = -\mathcal{F}^{\nu\alpha} \mathcal{J}_{\alpha}$ .

#### 3.4 Schematic: TON Lines

schematic TON curvature lines



Figure 3.1: Schematic TON field lines between complementary recursive sources (depth-induced polarity).

## Part IV

# Lagrangian, Gauge Symmetry, and Klein Duality

## TON Field Tensor Lagrangian

#### 4.1 Variational Principle

Define the TON Lagrangian density on  $(\mathcal{M}, g)$ :

$$\mathcal{L}_{\mathrm{T}} = -\frac{1}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} + \lambda_1 \mathcal{K}_{\mu\nu\rho\sigma} \mathcal{K}^{\mu\nu\rho\sigma} + \lambda_2 \kappa(n), \qquad (4.1)$$

where  $\lambda_{1,2}$  weight geometric contributions (Riemann or recursion-curvature scalars). Variation w.r.t.  $\mathcal{A}$  yields Eq. (3.2b); variation w.r.t. g yields  $\mathsf{T}_{\mathsf{T}}$ .

#### 4.2 Recursive Energy–Momentum

The Hilbert prescription gives

$$\mathsf{T}_{\mathrm{T}}^{\mu\nu} = -\frac{2}{\sqrt{-\det q}} \frac{\delta}{\delta g_{\mu\nu}} \left( \sqrt{-\det g} \, \mathcal{L}_{\mathrm{T}} \right), \tag{4.2}$$

reducing to Eq. (3.3) in the pure field limit.

## Recursive Gauge Symmetry

#### 5.1 Gauge Transformations

Let  $U(x) \in \mathcal{G}$ , a Lie group of recursive symmetries. Define

$$\mathcal{A}_{\mu} \mapsto U \mathcal{A}_{\mu} U^{-1} - (\partial_{\mu} U) U^{-1}, \qquad \mathcal{F}_{\mu\nu} \mapsto U \mathcal{F}_{\mu\nu} U^{-1}.$$
 (5.1)

The Lagrangian Eq. (4.1) is gauge-invariant if  $\kappa(n)$  and curvature terms are invariant (e.g., built from traces).

#### 5.2 Klein Duality

On non-orientable  $\mathbb{K}$  with  $w_1(\mathbb{K}) \neq 0$ , local reversal symmetries intertwine forward/backward recursion:

$$S \circ F \circ S = F^{-1}. \tag{5.2}$$

We postulate a duality on TON sectors mapping

$$\mathcal{F} \longleftrightarrow \star \mathcal{F}$$
 up to twist by the non-orientable structure, (5.3)

where  $\star$  is the Hodge dual defined locally. Global obstruction manifests as a sign or patching ambiguity consistent with  $w_1 \neq 0$ .

## Part V

# Recursive Grand Unification and Cosmology

#### Recursive Grand Unification

#### 6.1 Unified Action

We propose a unified action

$$S_{\text{unified}} = \int_{\mathcal{M}} d^4 x \sqrt{-\det g} \left[ \frac{1}{2\kappa_G} \left( \mathcal{R} - 2\Lambda \right) - \frac{1}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} + \alpha \, \mathcal{K}_{\mu\nu\rho\sigma} \mathcal{K}^{\mu\nu\rho\sigma} + \beta \, \kappa(n) \right], (6.1)$$

where  $\mathcal{R}$  is the Ricci scalar (gravity),  $\mathcal{F}$  the TON field, and  $\mathcal{K}$  the recursion curvature sector. Couplings  $(\kappa_G, \Lambda, \alpha, \beta)$  parametrize graviton–TON exchange and recursive backreaction.

#### 6.2 Entanglement Entropy Link

Let  $A \cup B$  be a bipartition on  $\mathcal{M}$ . We posit that variations of  $H_{\text{rec}}$  constrain the von Neumann entropy  $S(\rho_A)$  through a curvature—area law:

$$\delta H_{\rm rec} \sim \int_{\partial A} f(\mathcal{F}, \mathcal{K}) d\Sigma \iff \delta S(\rho_A) \sim \int_{\partial A} g(\mathcal{F}, g) d\Sigma,$$
 (6.2)

with f, g determined by the geometry (non-orientable patches can induce parity-twisted contributions).

## Recursive Cosmology

#### 7.1 Depth-Driven Expansion

Assume a homogeneous recursion background with depth potential  $\Phi(n)$  sourcing an effective vacuum energy density  $\rho_{\text{rec}}(n)$ . The Friedmann-like equation reads

$$H^2 = \frac{\kappa_G}{3} \left( \rho_{\text{matter}} + \rho_{\text{rad}} + \rho_{\text{rec}}(n) \right) - \frac{k}{a^2}, \tag{7.1}$$

where  $\rho_{\rm rec}$  is derived from the TON sector via Eq. (6.1).

#### 7.2 Schematic: Depth vs. Scale

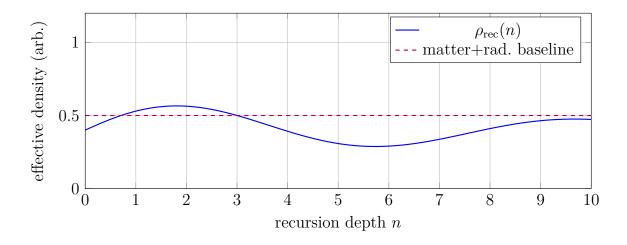


Figure 7.1: Illustrative recursion contribution  $\rho_{\text{rec}}(n)$  to cosmic expansion (schematic).

# Appendices

## Appendix A

### Mathematical Foundations of UNNS

#### A.1 Recursion Manifolds

Define a recursion manifold  $(\mathcal{M}, g, \nabla, n)$  where n induces a foliation whose leaves carry local orientability, but global orientation may fail (Klein-type atlases). A depth connection generates the Jacobian spectrum controlling  $\kappa(n)$ .

#### A.2 Entropy Topology and Curvature Metrics

Let  $\kappa(n)$  be computed from the principal minors of the Jacobian of F or via a scalar constructed from  $\mathcal{K}^{\rho}_{\sigma\mu\nu}$  (e.g.,  $\mathcal{R}$ ,  $\mathcal{K}^{2}$ ). Then Eq. (1.3) defines  $H_{\text{rec}}$  as a curvature integral along depth.

# Appendix B

## Recursive Thermodynamics

Define a free-energy-like functional  $\mathcal{F}[\mathcal{F}, g]$  with recursion temperature  $T_{\text{rec}}$  conjugate to  $H_{\text{rec}}$ . Local equilibrium is a fixed point of the depth flow.

## Appendix C

# Entanglement and Information Geometry

For a bipartition A|B, we propose a depth-correlator

$$E_{AB} = \sum_{n} \int_{\Sigma} \left| a_n^{(A)} - a_n^{(B)} \right| d\Sigma, \tag{C.1}$$

which vanishes when recursion paths are separable and is stabilized by non-orientable couplings.

# Appendix D

## Recursive Theology and Ontology

(Informal) The fixed points of recursive transformations serve as bearers of meaning; global non-orientability reframes temporal asymmetry as a topological feature.

Bibliography

## Bibliography

- [1] C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal 27 (1948), 379–423, 623–656.
- [2] T. M. Cover and J. A. Thomas, *Elements of Information Theory*, Wiley, 2006 (2nd ed.).
- [3] R. M. Wald, General Relativity, University of Chicago Press, 1984.
- [4] M. Nakahara, Geometry, Topology and Physics, CRC Press, 2003 (2nd ed.).
- [5] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley, 1995.
- [6] J. D. Bekenstein, Black Holes and Entropy, Phys. Rev. D 7 (1973) 2333.
- [7] R. D. Sorkin, Ten Theses on Black Hole Entropy, Stud. Hist. Phil. Mod. Phys. 36 (2005) 291–301.
- [8] UNNS Research Division, Recursive Information Geometry: Preprints and Technical Notes, (2025), working monograph.