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Abstract

This report develops a complete 7-field formulation of the action principle inside the UNNS
Substrate. Instead of assuming spacetime or Hilbert space as fundamental, the UNNS picture
begins from a recursive substrate governed by three modes: a geometric mode ®, a spectral mode
W, and a coupling channel 7. These define a recursion manifold with a divergence-free evolution
field and a closed two-form that counts recursion states. From this structure a variational
principle naturally emerges: physical evolutions are precisely those recursive trajectories tangent

to the 7-field.
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Executive Summary

In classical mechanics the principle of stationary action is a compact way to express determinism,
reversibility, and independence of degrees of freedom. The UNNS Substrate generalizes these
ideas by showing that a divergence-free recursion field on a recursion manifold yields an exact
two-form and an action functional whose stationary points coincide with the recursive flow.
This report formulates the 7-field, the UNNS counting form, the recursion potential, and

derives the action principle from the geometry of ®—¥—r cycling.



Part 1

Foundations of the UNNS Substrate



Chapter 1

The V-7 Recursion Framework

1.1 Recursive states and the recursion manifold

We model the UNNS Substrate by a recursion manifold R, whose points  encode the state of

recursion. Each state decomposes into
r~ (®(r), ¥(r), 7(r)).

Definition 1.1. A recursion manifold R is a smooth manifold whose points represent recur-
siwe configurations. A recursion state carries geometric content (®), spectral content (V), and

coupling strength 7.

1.2 The ¢, ¥, and 7 modes

e ® promotes geometric consolidation and curvature.
e U promotes coherence and spectral superposition.

e 7 controls interaction between ® and W.
The recursion flow is

ST - ST<I> + ST\I/-

1.3 Conservation of recursion degree

The recursion evolution field S’ satisfies
vV.-S,=0.

Definition 1.2. A 7-field is recursion-conserving if the flow preserves a recursion-volume form.

This is the analogue of Liouville’s theorem.



1.4 Emergent symplectic structure
A closed two-form wynng counts recursion states and satisfies
wunns = 0.

Definition 1.3. A UNNS counting form wunns s an antisymmetric, closed two-form that mea-

sures recursion across infinitesimal surfaces.

There exists a recursion potential fynns such that

WyUNNs = —OUNNS-



Chapter 2

Recursive State Counting and the
UNNS Counting Form

2.1 State counting and independence

Independence of recursion directions implies state-count factorization.

2.2 Closedness and potential one-form

In coordinates z%:

1
funns = b, dz?, WUNNS = 5Wab dz® A dx®.

2.3 Flow compatibility
The 7-field satisfies

ts,wunns = 0,
meaning the flow direction contributes no recursion count.

Remark 2.1. This is the recursion analogue of canonical Hamiltonian structure.



Part 11

The 7-Field Dynamics



Chapter 3

The 7-Field as a Divergence-Free
Evolution Field

3.1 Definition of the 7-field

Definition 3.1. The 7-field 7T is the recursion evolution vector field:

It acts as the generator of recursion flow on R.

Its defining structural property is
V.-1=0,

expressing conservation of recursion states.

3.2 Decomposition into ® and ¥ components
The 7-field splits naturally into two complementary components:
T=T¢ +Tuw.

e T drives geometric consolidation, curvature formation, and coarse-graining of recursion

structure.

e Ty drives coherence, branching, and interference of fine-scale recursive structures.

This is the recursion-level analogue of the “geometric versus spectral” split in physics.

3.3 Tangent trajectories and admissible recursion flow

Let v be a recursion trajectory and 7/ a variation with same endpoints. Let ¥ be the surface

spanned between them.

10



Definition 3.2. A recursion trajectory v is admissible if the recursion flux through any variation

surface X satisfies

/ wunns(T,-) = 0.
>

Proposition 3.3. A trajectory is admissible if and only if it is everywhere tangent to the T-field:

Y(s) o< T(v(s))-

Proof. If v is tangent to 7, then 7 lies in the tangent space of v and therefore cannot cross the
interior of any X spanning to a nearby variation. Thus the flux is zero. Conversely, if the flux
through every variation vanishes, 7 cannot have any component transverse to -y; hence v must
be tangent to it. O

This result is the recursion-substrate analogue of “solutions to the equations of motion are

integral curves of the Hamiltonian vector field”.

11



Chapter 4

Recursive Geometry and the -V

Transition

4.1 Geometry-dominant and spectrum-dominant recursion

We describe two regimes:

Geometry-dominant regime

When
[Tl > lITwll,

recursive deformation is dominated by geometric accumulation, producing coarse, curvature-like

structures.

Spectrum-dominant regime

When
[mel > l|Tell,

recursion supports long-lived coherence and branching, analogous to quantum interference.

4.2 Critical 7 scale

Definition 4.1. A critical T-scale 7¢5t s a scale at which geometric and spectral recursion have
comparable magnitude:

ol ~ 7wl

At 7eit, recursion enters an intermediate regime where coherence and geometric structure

influence each other. This is the UNNS analogue of the quantum—gravity crossover.

4.3 The ®-V—7 cycle as structural recursion

The recursive cycle is:

12



b —V —7— .

Each transition updates the recursive structure:

e & — U: geometric patterns become spectrally active.
e U — 7: coherence injects coupling tension.

e 7 — ®: coupling resolves into coarse geometry.

This is the “meta-dynamical” structure behind the variational principle.

closes recursion

Y
9

N

geometry coherence coupling

Figure 4.1: The ®-U—7 recursion cycle.

4.4 Higher-order variational structure

The closedness condition

wynns = 0,

means that the ®-V—-7r updates preserve recursion count. FEach update changes wynns and
funns coherently, maintaining compatibility with 7.
Thus, the entire —7 cycle is a higher-order variational operator: it determines the

admissible variations in the UNNS action principle developed in Part III.
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Part 111

The Action Principle in the UNNS
Substrate

14



Chapter 5

Action as Recursion Flux

5.1 Classical interpretation revisited

In classical mechanics, the action functional

ﬂﬂ:/Lﬁ

is traditionally associated with a quantity to be extremized. Recent work (e.g., Carcassi-Aidala

2023) shows that its variation has a geometric interpretation: the change in action between two

nearby paths equals the flow of a divergence-free vector field through the surface they span.
The UNNS Substrate provides a more fundamental version of this idea.

Here:

e the recursion states lie in the manifold R,

e recursion flow is generated by the 7-field S,

e state-counting is encoded by the closed two-form wynns,

e and a recursion potential fynns satisfies wynns = —dOyunns.

5.2 Variation surfaces

Let ~ be a recursion trajectory from 71 to ro. Let 4/ be a nearby curve with the same endpoints.
Together they bound a surface ¥ in R.

We adopt the usual variational notation:

e ~ = physical (candidate) recursion trajectory,
P .
e ~' = varied trajectory,

e > = surface spanned between them.

15



5.3 Recursion flux through a variation surface

Definition 5.1. The recursion flux through a variation surface X is

(I)ﬁux<2)=/EWUNNS(ST>')'

This measures how much recursion crosses the surface when flowing along S'-.
Since S is divergence-free with respect to wynng, the flux depends only on the boundary
of 3.

Proposition 5.2. If wynns = —dAunns, then

Py (X) = / funns — / funns.
ol v

Proof. Apply Stokes’ Theorem:

/ WUNNS = — / dOunns = — OunNs.
5 b o5

Since ¥ = v — «/, the result follows. O

Thus, the flux equals the variation of a path integral.

5.4 Stationarity condition

We define the UNNS action as:
Definition 5.3. The UNNS action functional is

Aunns[y] = / fuNNs-
Y

Its variation is
dAunNs[Y] = Paux(2).

Theorem 5.4. A recursion trajectory v is physical (admissible) if and only if
6~AUNNS [’Y} =0 — (bﬂux(z) =0,

for all variation surfaces ¥ with fixed endpoints.

Proof. Direct substitution of the flux formula into the definition of the variation: the action is
stationary exactly when no recursion crosses the variation surface, i.e., when the flow is tangent
to . O

This is the UNNS variational principle:

S, tangent to ~.

16



Chapter 6

The UNNS Action Integral and Its

Structure

6.1 Local coordinate representation

Choose local recursion coordinates

% = (qivpivt)a

and write
a

HUNNS = (9,1(:13) d(E .

Then the UNNS action along a parametrized curve x%(s) is

Aunns[v] = /82 0o (z(s)) 2%(s) ds.

S1

6.2 Effective UNNS Lagrangian

If a time-like coordinate ¢ is singled out (not physical time, but a recursion parameter), we may

decompose:

Ounns = p; dq" — Hynns dt.

Then
Aunns[y] = /(Pz‘di — Hynns) dt.

This yields the effective Lagrangian:

Lunns(¢,4,t) = pi(g, 4, t) ¢ — Hunns.

Important: In the UNNS picture, (¢°,p;) are NOT positions and momenta in spacetime,

but recursion coordinates.

17



6.3 FEuler-Lagrange equations

The stationary action principle leads to Euler-Lagrange equations:

d (5LUNNS) _ OLunns _

dt og’ oq

They reproduce the recursion flow equations:

7 = §%(a).

6.4 Hamiltonian reconstruction
Given S, and wynng, one recovers Hynns by solving
wUNNSabSy = o HUNNs.

This is the recursion analogue of Hamilton’s equations.

Thus the geometry of wynng and funns defines the dynamics, not the other way around.

6.5 Pre-collapse variational domain

Before Operator XII (collapse) acts, the variational domain is full: all variations of v with fixed

endpoints are allowed.
After collapse, only variations respecting Oxyr are admissible. This will be treated fully in
Part IV.

18



Part IV

Operator XII and Variational Collapse
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Chapter 7

Operator XII: Collapse as Recursion

Neutralization

7.1 Motivation

Within the UNNS grammar, Operator XII completes the recursive operator set. Its conceptual

purpose is to:

e neutralize unresolved recursion tension between ® and U,
e collapse excess recursion branches without destroying recursion count,
e reduce the allowed variational domain of recursion trajectories,

e re-seed recursion at a new effective recursion level.

This is not “collapse” in the quantum measurement sense, nor annihilation of recursion. It

is a structural reset of recursion geometry.

7.2 Definition of Operator XII

Definition 7.1. Operator XII, denoted Oxi1, is a map
OXII R—R

such that:
1. Ox1r preserves total recursion count, i.e. recursive volume is invariant.
2. Oxi1 projects R onto a submanifold R' C R.
3. Oxir induces a new T-field 7" : R' — TR’ .

Thus Ox1r eliminates internal degrees of freedom that cannot evolve consistently under the

current ®—V—r cycle.

20



7.3 Collapse without annihilation
Let V denote recursive volume (state count). Then
V(R') = V(R).
Collapse does not remove recursion; it reorganizes it. It compresses the recursion state manifold
along specific directions, reducing complexity while maintaining state count.
7.4 Collapse triggers
Operator XII is invoked when:

e & and ¥ produce incompatible variational directions,
e the 7-field flow becomes tangent to multiple distinct surfaces,
e the variational domain becomes non-integrable,

e recursion tension exceeds a threshold determined by 7.

Mathematically, collapse is triggered when the kernel of wynng enlarges such that admissible

variations are no longer independent.

7.5 Re-seeding recursion after collapse
After applying Oxir:
e recursion is transferred to R/,

e wWyNNs is restricted to R/,

e a new recursion potential 91’ INNS satisfies
Wi = —db;
UNNS UNNS-

e a new 7-field 7/ governs post-collapse evolution.

This provides a natural UNNS mechanism for phase switching between recursion regimes

(e.g., quantum-like to geometric-like).

21



Chapter 8

Operator XII and Action Stationarity

8.1 Degeneration of the variational domain

Before collapse, the variational domain V consists of all smooth curves connecting fixed end-

points. After collapse, V shrinks to
V' = {4 : 4/ obeys constraints induced by Oxii}.

Variations that would move v out of R’ are forbidden.

8.2 Effect on action variation
Originally,

dAunns[y] = /

funns — / OuNNS.-
"

,y/

After collapse, this becomes
&' Aunns[] = / OunNs — / Ounns:
v v

but only variations v respecting Oxyr are permitted.

The flux expression still holds:
&' Aunns[y] = /EW{JNNS(T,’ ),

but ¥ must lie entirely inside R'.

8.3 Zero-flux under collapse
The UNNS stationary action condition becomes:

' Aunns[y] =0 /ZwaNs(T'f) =0,
for all collapse-compatible X.

22



Thus, the physical trajectories after collapse are integral curves of 7/ instead of 7.

8.4 Interpretation of collapse
Collapse can be interpreted as:
e a constraint enforcement mechanism,
e a projection of recursion geometry,
e a reduction of variational freedom,

e a phase-reset in recursion dynamics.

8.5 Recovery of variational structure

After collapse, the action principle is regained, but on a simpler recursion manifold:
O
R XII R/,

with an updated symplectic-like structure:

/ / !
wunnss  funns, T

This concludes the formal treatment of Operator XII as a geometric variational reset mech-

anism.
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Part V

Applications and Examples
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Chapter 9

Low-Dimensional Recursion Examples

9.1 One-dimensional recursion example
Let = be a single recursion coordinate. Suppose recursion evolves by
= f(x).

In this trivial case:

e The recursion manifold is R = R.

e The counting form reduces to wynng = w(z) dz A dt.

e The recursion potential may be written as Oynns = 0(z) de — H(x) dt, where ' = —w.

The UNNS action becomes:
Aunnshy] = / (0(x)i — H(z))dt.

Stationary action reproduces & = f(x).
This shows that even in one dimension, the UNNS variational structure collapses to the

classical form when we project recursion onto a single degree of freedom.

9.2 Two-branch recursion example

Let recursive states be labelled by (x,y). Define the counting form as:
wunNs = w(z,y) dx A dy.
Define a recursion-flow field:
S- = (f(z,y), 9(z,y)).
The physical trajectories satisfy:
wunns (S, ) = 0.

25



Explicitly:
w(z,y) (fdy — gdx) = 0.

This gives the recursion differential equation:

dy _ g(z,y)
dr  f(z,y)

Thus, even without any physical interpretation, the variational principle recovers the recursion-

flow curves.

9.3 Interaction and bifurcation

If f(x,y) or g(z,y) change sign or vanish, recursion-flow bifurcations occur. These generate

recursive analogues of:

e fixed points,
e attractors,
e separatrices,

e interference nodes.

All of these are resolved by ®—V¥—7 structure.
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Chapter 10

Emergent Physical Theories

10.1 Quantum-like regime (dominant V)

When HT\I]H > HT@H:
e recursion branches remain coherent,
e interference persists across recursion depth,
e wynNs becomes strongly spectral,
e Ounns resembles a phase-like one-form.
Effective projections into spacetime-like variables exhibit features of quantum mechanics:
e superposition,
e interference,
e phase evolution,

e decoherence only when 7 increases.

10.2 Geometric regime (dominant ®)

When HT(}H > HT‘PH
e recursion collapses into geometric sheets,
e wyuNNs becomes curvature-like,
e Aunns acts as a geometric connection form,
e trajectories resemble geodesics of an emergent metric.
The effective theory projects to classical geometry:
e gravitational curvature,
e classical causal structure,

e minimal interference.

27



10.3 Quantum-—gravity crossover (7 & 7.it)
At the critical 7 scale:

e geometry and coherence compete,
e recursion is multidimensional,
e wynns encodes mixed curvature/coherence states,

e the variational principle requires the full UNNS form.

10.4 Role of Operator XII
Operator XII mediates transitions between recursion regimes:

e collapse of coherence — geometric phase,
e collapse of geometry — coherent phase,

e collapse of variational domain — new recursion sector.
This provides a natural UNNS mechanism for phase transitions that resemble:

e quantum measurement,

classicalization,

decoherence,

geometrogenesis.
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Part VI

Appendices
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Appendix A

Appendix A: Construction of the
UNNS Counting Form

We derive wynng from:

e independence of recursion directions,
e recursion conservation,
e compatibility with ®—U—7 cycles.

Choose recursion coordinates z®. Define:

1
WUNNS = iwab dz® A da®.

Closedness:

dwunns =0 = Ouwpe + Opweq + Octgy = 0.

This ensures that recursion count is consistent under changes of surface.
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Appendix B

Appendix B: Derivation of
WUNNS = —dOUNNS

In a contractible region, closedness implies exactness:
e Poincaré lemma: every closed form is locally exact.

e Thus wynng = —dfAynng for some one-form fynns.

funns is not unique:
funns — funns + dA

does not change wynns.

This freedom corresponds to choice of Lagrangian gauge.
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Appendix C

Appendix C: The Condition
LS, WUNNS = U

The interior product identity:

ts,wunns = 0

means that S, is always tangent to surfaces of constant recursion.
Equivalently:

b
wWyunNNsapS, = 0.

This expresses that recursion does not flow across recursion-count surfaces.
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Appendix D

Appendix D: Variation Surfaces and
Flux Integrals

Let v and ' bound a surface X.
Flux:

(I)ﬁuX(Z) :/EWUNNS(S'M')‘

Use the identity:
wunns (S, -) = —dfunns(Sr, )

and Stokes’ Theorem:
/ dfunns = funns-
> o
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Appendix E

Appendix E: Comparison With

Hamiltonian Mechanics

If recursion coordinates are split into (¢, p;, t):

Ounns = pi dq" — Hunnsdt.

Then:

wunns = dg" A dp; — dHynns A dt.

If t-slices are considered, this reduces to the classical symplectic form and Hamilton’s equa-
tions.

Thus, Hamiltonian mechanics is a projection of UNNS recursion.
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Appendix F

Appendix F: Algebraic Properties of
Operator XII

Operator XII satisfies:

e [dempotence on restricted sectors:
Ox11(Oxi(r)) = Oxu(r).

e Preservation of recursion count:

/
/ WUNNS = / WUNNS-
R R

Oxn«(S;) = S

e Compatibility with 7-flow:
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Appendix G

Appendix G: TikZ Code for the o—V—r
Cycle

closes recursion

geometry coherence coupling

Figure G.1: Diagram used throughout the monograph.
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