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Abstract

This report develops a complete τ -field formulation of the action principle inside the UNNS
Substrate. Instead of assuming spacetime or Hilbert space as fundamental, the UNNS picture
begins from a recursive substrate governed by three modes: a geometric mode Φ, a spectral mode
Ψ, and a coupling channel τ . These define a recursion manifold with a divergence-free evolution
field and a closed two-form that counts recursion states. From this structure a variational
principle naturally emerges: physical evolutions are precisely those recursive trajectories tangent
to the τ -field.
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Executive Summary

In classical mechanics the principle of stationary action is a compact way to express determinism,
reversibility, and independence of degrees of freedom. The UNNS Substrate generalizes these
ideas by showing that a divergence-free recursion field on a recursion manifold yields an exact
two-form and an action functional whose stationary points coincide with the recursive flow.

This report formulates the τ -field, the UNNS counting form, the recursion potential, and
derives the action principle from the geometry of Φ–Ψ–τ cycling.
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Part I

Foundations of the UNNS Substrate
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Chapter 1

The Φ–Ψ–τ Recursion Framework

1.1 Recursive states and the recursion manifold

We model the UNNS Substrate by a recursion manifold R, whose points r encode the state of
recursion. Each state decomposes into

r ∼ (Φ(r), Ψ(r), τ(r)).

Definition 1.1. A recursion manifold R is a smooth manifold whose points represent recur-
sive configurations. A recursion state carries geometric content (Φ), spectral content (Ψ), and
coupling strength τ .

1.2 The Φ, Ψ, and τ modes

• Φ promotes geometric consolidation and curvature.

• Ψ promotes coherence and spectral superposition.

• τ controls interaction between Φ and Ψ.

The recursion flow is
Sτ = SτΦ + SτΨ.

1.3 Conservation of recursion degree

The recursion evolution field Sτ satisfies

∇ · Sτ = 0.

Definition 1.2. A τ -field is recursion-conserving if the flow preserves a recursion-volume form.

This is the analogue of Liouville’s theorem.
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1.4 Emergent symplectic structure

A closed two-form ωUNNS counts recursion states and satisfies

ωUNNS = 0.

Definition 1.3. A UNNS counting form ωUNNS is an antisymmetric, closed two-form that mea-
sures recursion across infinitesimal surfaces.

There exists a recursion potential θUNNS such that

ωUNNS = −θUNNS.
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Chapter 2

Recursive State Counting and the
UNNS Counting Form

2.1 State counting and independence

Independence of recursion directions implies state-count factorization.

2.2 Closedness and potential one-form

In coordinates xa:
θUNNS = θa dx

a, ωUNNS =
1

2
ωab dx

a ∧ dxb.

2.3 Flow compatibility

The τ -field satisfies
ιSτωUNNS = 0,

meaning the flow direction contributes no recursion count.

Remark 2.1. This is the recursion analogue of canonical Hamiltonian structure.
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Part II

The τ -Field Dynamics
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Chapter 3

The τ -Field as a Divergence-Free
Evolution Field

3.1 Definition of the τ -field

Definition 3.1. The τ -field τ is the recursion evolution vector field:

τ (r) = Sτ (r).

It acts as the generator of recursion flow on R.

Its defining structural property is
∇ · τ = 0,

expressing conservation of recursion states.

3.2 Decomposition into Φ and Ψ components

The τ -field splits naturally into two complementary components:

τ = τΦ + τΨ.

• τΦ drives geometric consolidation, curvature formation, and coarse-graining of recursion
structure.

• τΨ drives coherence, branching, and interference of fine-scale recursive structures.

This is the recursion-level analogue of the “geometric versus spectral” split in physics.

3.3 Tangent trajectories and admissible recursion flow

Let γ be a recursion trajectory and γ′ a variation with same endpoints. Let Σ be the surface
spanned between them.
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Definition 3.2. A recursion trajectory γ is admissible if the recursion flux through any variation
surface Σ satisfies ∫

Σ
ωUNNS(τ , ·) = 0.

Proposition 3.3. A trajectory is admissible if and only if it is everywhere tangent to the τ -field:

γ̇(s) ∝ τ (γ(s)).

Proof. If γ is tangent to τ , then τ lies in the tangent space of γ and therefore cannot cross the
interior of any Σ spanning to a nearby variation. Thus the flux is zero. Conversely, if the flux
through every variation vanishes, τ cannot have any component transverse to γ; hence γ must
be tangent to it.

This result is the recursion-substrate analogue of “solutions to the equations of motion are
integral curves of the Hamiltonian vector field”.
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Chapter 4

Recursive Geometry and the Φ–Ψ
Transition

4.1 Geometry-dominant and spectrum-dominant recursion

We describe two regimes:

Geometry-dominant regime

When
∥τΦ∥ ≫ ∥τΨ∥,

recursive deformation is dominated by geometric accumulation, producing coarse, curvature-like
structures.

Spectrum-dominant regime

When
∥τΨ∥ ≫ ∥τΦ∥,

recursion supports long-lived coherence and branching, analogous to quantum interference.

4.2 Critical τ scale

Definition 4.1. A critical τ -scale τcrit is a scale at which geometric and spectral recursion have
comparable magnitude:

∥τΦ∥ ≈ ∥τΨ∥.

At τcrit, recursion enters an intermediate regime where coherence and geometric structure
influence each other. This is the UNNS analogue of the quantum–gravity crossover.

4.3 The Φ–Ψ–τ cycle as structural recursion

The recursive cycle is:
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Φ −→ Ψ −→ τ −→ Φ.

Each transition updates the recursive structure:

• Φ → Ψ: geometric patterns become spectrally active.

• Ψ → τ : coherence injects coupling tension.

• τ → Φ: coupling resolves into coarse geometry.

This is the “meta-dynamical” structure behind the variational principle.

Φ Ψ τ

geometry coherence coupling

Φ → Ψ Ψ → τ

closes recursion

Figure 4.1: The Φ–Ψ–τ recursion cycle.

4.4 Higher-order variational structure

The closedness condition
ωUNNS = 0,

means that the Φ–Ψ–τ updates preserve recursion count. Each update changes ωUNNS and
θUNNS coherently, maintaining compatibility with τ .

Thus, the entire ––τ cycle is a higher-order variational operator: it determines the
admissible variations in the UNNS action principle developed in Part III.

13



Part III

The Action Principle in the UNNS
Substrate
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Chapter 5

Action as Recursion Flux

5.1 Classical interpretation revisited

In classical mechanics, the action functional

S[γ] =

∫
γ
Ldt

is traditionally associated with a quantity to be extremized. Recent work (e.g., Carcassi–Aidala
2023) shows that its variation has a geometric interpretation: the change in action between two
nearby paths equals the flow of a divergence-free vector field through the surface they span.

The UNNS Substrate provides a more fundamental version of this idea.
Here:

• the recursion states lie in the manifold R,

• recursion flow is generated by the τ -field Sτ ,

• state-counting is encoded by the closed two-form ωUNNS,

• and a recursion potential θUNNS satisfies ωUNNS = −dθUNNS.

5.2 Variation surfaces

Let γ be a recursion trajectory from r1 to r2. Let γ′ be a nearby curve with the same endpoints.
Together they bound a surface Σ in R.

We adopt the usual variational notation:

• γ = physical (candidate) recursion trajectory,

• γ′ = varied trajectory,

• Σ = surface spanned between them.
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5.3 Recursion flux through a variation surface

Definition 5.1. The recursion flux through a variation surface Σ is

Φflux(Σ) =

∫
Σ
ωUNNS(Sτ , ·).

This measures how much recursion crosses the surface when flowing along Sτ .
Since Sτ is divergence-free with respect to ωUNNS, the flux depends only on the boundary

of Σ.

Proposition 5.2. If ωUNNS = −dθUNNS, then

Φflux(Σ) =

∫
γ
θUNNS −

∫
γ′
θUNNS.

Proof. Apply Stokes’ Theorem:∫
Σ
ωUNNS = −

∫
Σ
dθUNNS = −

∫
∂Σ

θUNNS.

Since ∂Σ = γ − γ′, the result follows.

Thus, the flux equals the variation of a path integral.

5.4 Stationarity condition

We define the UNNS action as:

Definition 5.3. The UNNS action functional is

AUNNS[γ] =

∫
γ
θUNNS.

Its variation is
δAUNNS[γ] = Φflux(Σ).

Theorem 5.4. A recursion trajectory γ is physical (admissible) if and only if

δAUNNS[γ] = 0 ⇐⇒ Φflux(Σ) = 0,

for all variation surfaces Σ with fixed endpoints.

Proof. Direct substitution of the flux formula into the definition of the variation: the action is
stationary exactly when no recursion crosses the variation surface, i.e., when the flow is tangent
to γ.

This is the UNNS variational principle:

Sτ tangent to γ.
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Chapter 6

The UNNS Action Integral and Its
Structure

6.1 Local coordinate representation

Choose local recursion coordinates
xa = (qi, pi, t),

and write
θUNNS = θa(x) dx

a.

Then the UNNS action along a parametrized curve xa(s) is

AUNNS[γ] =

∫ s2

s1

θa(x(s)) ẋ
a(s) ds.

6.2 Effective UNNS Lagrangian

If a time-like coordinate t is singled out (not physical time, but a recursion parameter), we may
decompose:

θUNNS = pi dq
i −HUNNS dt.

Then
AUNNS[γ] =

∫
(piq̇

i −HUNNS) dt.

This yields the effective Lagrangian:

LUNNS(q, q̇, t) = pi(q, q̇, t) q̇
i −HUNNS.

Important: In the UNNS picture, (qi, pi) are NOT positions and momenta in spacetime,
but recursion coordinates.
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6.3 Euler–Lagrange equations

The stationary action principle leads to Euler–Lagrange equations:

d

dt

(
∂LUNNS

∂q̇i

)
− ∂LUNNS

∂qi
= 0.

They reproduce the recursion flow equations:

ẋa = Sa
τ (x).

6.4 Hamiltonian reconstruction

Given Sτ and ωUNNS, one recovers HUNNS by solving

ωUNNSabS
b
τ = ∂aHUNNS.

This is the recursion analogue of Hamilton’s equations.
Thus the geometry of ωUNNS and θUNNS defines the dynamics, not the other way around.

6.5 Pre-collapse variational domain

Before Operator XII (collapse) acts, the variational domain is full: all variations of γ with fixed
endpoints are allowed.

After collapse, only variations respecting OXII are admissible. This will be treated fully in
Part IV.
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Part IV

Operator XII and Variational Collapse
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Chapter 7

Operator XII: Collapse as Recursion
Neutralization

7.1 Motivation

Within the UNNS grammar, Operator XII completes the recursive operator set. Its conceptual
purpose is to:

• neutralize unresolved recursion tension between Φ and Ψ,

• collapse excess recursion branches without destroying recursion count,

• reduce the allowed variational domain of recursion trajectories,

• re-seed recursion at a new effective recursion level.

This is not “collapse” in the quantum measurement sense, nor annihilation of recursion. It
is a structural reset of recursion geometry.

7.2 Definition of Operator XII

Definition 7.1. Operator XII, denoted OXII, is a map

OXII : R → R

such that:

1. OXII preserves total recursion count, i.e. recursive volume is invariant.

2. OXII projects R onto a submanifold R′ ⊂ R.

3. OXII induces a new τ -field τ ′ : R′ → TR′.

Thus OXII eliminates internal degrees of freedom that cannot evolve consistently under the
current Φ–Ψ–τ cycle.
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7.3 Collapse without annihilation

Let V denote recursive volume (state count). Then

V (R′) = V (R).

Collapse does not remove recursion; it reorganizes it. It compresses the recursion state manifold
along specific directions, reducing complexity while maintaining state count.

7.4 Collapse triggers

Operator XII is invoked when:

• Φ and Ψ produce incompatible variational directions,

• the τ -field flow becomes tangent to multiple distinct surfaces,

• the variational domain becomes non-integrable,

• recursion tension exceeds a threshold determined by τ .

Mathematically, collapse is triggered when the kernel of ωUNNS enlarges such that admissible
variations are no longer independent.

7.5 Re-seeding recursion after collapse

After applying OXII:

• recursion is transferred to R′,

• ωUNNS is restricted to R′,

• a new recursion potential θ′UNNS satisfies

ω′
UNNS = −dθ′UNNS.

• a new τ -field τ ′ governs post-collapse evolution.

This provides a natural UNNS mechanism for phase switching between recursion regimes
(e.g., quantum-like to geometric-like).
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Chapter 8

Operator XII and Action Stationarity

8.1 Degeneration of the variational domain

Before collapse, the variational domain V consists of all smooth curves connecting fixed end-
points. After collapse, V shrinks to

V ′ = {γ′ : γ′ obeys constraints induced by OXII}.

Variations that would move γ out of R′ are forbidden.

8.2 Effect on action variation

Originally,

δAUNNS[γ] =

∫
γ
θUNNS −

∫
γ′
θUNNS.

After collapse, this becomes

δ′AUNNS[γ] =

∫
γ
θ′UNNS −

∫
γ′
θ′UNNS,

but only variations γ′ respecting OXII are permitted.
The flux expression still holds:

δ′AUNNS[γ] =

∫
Σ
ω′
UNNS(τ

′, ·),

but Σ must lie entirely inside R′.

8.3 Zero-flux under collapse

The UNNS stationary action condition becomes:

δ′AUNNS[γ] = 0 ⇐⇒
∫
Σ
ω′
UNNS(τ

′, ·) = 0,

for all collapse-compatible Σ.
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Thus, the physical trajectories after collapse are integral curves of τ ′ instead of τ .

8.4 Interpretation of collapse

Collapse can be interpreted as:

• a constraint enforcement mechanism,

• a projection of recursion geometry,

• a reduction of variational freedom,

• a phase-reset in recursion dynamics.

8.5 Recovery of variational structure

After collapse, the action principle is regained, but on a simpler recursion manifold:

R OXII−−−→ R′,

with an updated symplectic-like structure:

ω′
UNNS, θ′UNNS, τ ′.

This concludes the formal treatment of Operator XII as a geometric variational reset mech-
anism.
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Part V

Applications and Examples
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Chapter 9

Low-Dimensional Recursion Examples

9.1 One-dimensional recursion example

Let x be a single recursion coordinate. Suppose recursion evolves by

ẋ = f(x).

In this trivial case:

• The recursion manifold is R = R.

• The counting form reduces to ωUNNS = ω(x) dx ∧ dt.

• The recursion potential may be written as θUNNS = θ(x) dx−H(x) dt, where θ′ = −ω.

The UNNS action becomes:

AUNNS[γ] =

∫
(θ(x)ẋ−H(x))dt.

Stationary action reproduces ẋ = f(x).
This shows that even in one dimension, the UNNS variational structure collapses to the

classical form when we project recursion onto a single degree of freedom.

9.2 Two-branch recursion example

Let recursive states be labelled by (x, y). Define the counting form as:

ωUNNS = ω(x, y) dx ∧ dy.

Define a recursion-flow field:

Sτ = (f(x, y), g(x, y)).

The physical trajectories satisfy:

ωUNNS(Sτ , ·) = 0.
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Explicitly:
ω(x, y) (f dy − g dx) = 0.

This gives the recursion differential equation:

dy

dx
=

g(x, y)

f(x, y)
.

Thus, even without any physical interpretation, the variational principle recovers the recursion-
flow curves.

9.3 Interaction and bifurcation

If f(x, y) or g(x, y) change sign or vanish, recursion-flow bifurcations occur. These generate
recursive analogues of:

• fixed points,

• attractors,

• separatrices,

• interference nodes.

All of these are resolved by Φ–Ψ–τ structure.
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Chapter 10

Emergent Physical Theories

10.1 Quantum-like regime (dominant Ψ)

When ∥τΨ∥ ≫ ∥τΦ∥:

• recursion branches remain coherent,

• interference persists across recursion depth,

• ωUNNS becomes strongly spectral,

• θUNNS resembles a phase-like one-form.

Effective projections into spacetime-like variables exhibit features of quantum mechanics:

• superposition,

• interference,

• phase evolution,

• decoherence only when τ increases.

10.2 Geometric regime (dominant Φ)

When ∥τΦ∥ ≫ ∥τΨ∥:

• recursion collapses into geometric sheets,

• ωUNNS becomes curvature-like,

• θUNNS acts as a geometric connection form,

• trajectories resemble geodesics of an emergent metric.

The effective theory projects to classical geometry:

• gravitational curvature,

• classical causal structure,

• minimal interference.
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10.3 Quantum–gravity crossover (τ ≈ τcrit)

At the critical τ scale:

• geometry and coherence compete,

• recursion is multidimensional,

• ωUNNS encodes mixed curvature/coherence states,

• the variational principle requires the full UNNS form.

10.4 Role of Operator XII

Operator XII mediates transitions between recursion regimes:

• collapse of coherence → geometric phase,

• collapse of geometry → coherent phase,

• collapse of variational domain → new recursion sector.

This provides a natural UNNS mechanism for phase transitions that resemble:

• quantum measurement,

• classicalization,

• decoherence,

• geometrogenesis.
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Part VI

Appendices
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Appendix A

Appendix A: Construction of the
UNNS Counting Form

We derive ωUNNS from:

• independence of recursion directions,

• recursion conservation,

• compatibility with Φ–Ψ–τ cycles.

Choose recursion coordinates xa. Define:

ωUNNS =
1

2
ωab dx

a ∧ dxb.

Closedness:
dωUNNS = 0 ⇒ ∂aωbc + ∂bωca + ∂cωab = 0.

This ensures that recursion count is consistent under changes of surface.
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Appendix B

Appendix B: Derivation of
ωUNNS = −dθUNNS

In a contractible region, closedness implies exactness:

• Poincaré lemma: every closed form is locally exact.

• Thus ωUNNS = −dθUNNS for some one-form θUNNS.

θUNNS is not unique:
θUNNS → θUNNS + dλ

does not change ωUNNS.
This freedom corresponds to choice of Lagrangian gauge.
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Appendix C

Appendix C: The Condition
ιSτ

ωUNNS = 0

The interior product identity:
ιSτωUNNS = 0

means that Sτ is always tangent to surfaces of constant recursion.
Equivalently:

ωUNNSabS
b
τ = 0.

This expresses that recursion does not flow across recursion-count surfaces.
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Appendix D

Appendix D: Variation Surfaces and
Flux Integrals

Let γ and γ′ bound a surface Σ.
Flux:

Φflux(Σ) =

∫
Σ
ωUNNS(Sτ , ·).

Use the identity:
ωUNNS(Sτ , ·) = −dθUNNS(Sτ , ·)

and Stokes’ Theorem: ∫
Σ
dθUNNS =

∫
∂Σ

θUNNS.
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Appendix E

Appendix E: Comparison With
Hamiltonian Mechanics

If recursion coordinates are split into (qi, pi, t):

θUNNS = pi dq
i −HUNNSdt.

Then:

ωUNNS = dqi ∧ dpi − dHUNNS ∧ dt.

If t-slices are considered, this reduces to the classical symplectic form and Hamilton’s equa-
tions.

Thus, Hamiltonian mechanics is a projection of UNNS recursion.
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Appendix F

Appendix F: Algebraic Properties of
Operator XII

Operator XII satisfies:

• Idempotence on restricted sectors:

OXII(OXII(r)) = OXII(r).

• Preservation of recursion count: ∫
R′

ω′
UNNS =

∫
R
ωUNNS.

• Compatibility with τ -flow:
OXII∗(Sτ ) = S′

τ .
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Appendix G

Appendix G: TikZ Code for the Φ–Ψ–τ
Cycle

Φ Ψ τ

geometry coherence coupling

Φ → Ψ Ψ → τ

closes recursion

Figure G.1: Diagram used throughout the monograph.
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