

**$\Phi$ – $\Psi$ – $\tau$  Recursion and the Principle of Stationary  
Action:  
A Complete  $\tau$ -Field Formulation**

UNNS Research Collective (2025)

November 14, 2025

## Abstract

This report develops a complete  $\tau$ -field formulation of the action principle inside the UNNS Substrate. Instead of assuming spacetime or Hilbert space as fundamental, the UNNS picture begins from a recursive substrate governed by three modes: a geometric mode  $\Phi$ , a spectral mode  $\Psi$ , and a coupling channel  $\tau$ . These define a recursion manifold with a divergence-free evolution field and a closed two-form that counts recursion states. From this structure a variational principle naturally emerges: physical evolutions are precisely those recursive trajectories tangent to the  $\tau$ -field.

# Contents

|                                                                                        |           |
|----------------------------------------------------------------------------------------|-----------|
| <b>Executive Summary</b>                                                               | <b>4</b>  |
| <b>I Foundations of the UNNS Substrate</b>                                             | <b>5</b>  |
| <b>1 The <math>\Phi</math>-<math>\Psi</math>-<math>\tau</math> Recursion Framework</b> | <b>6</b>  |
| 1.1 Recursive states and the recursion manifold                                        | 6         |
| 1.2 The $\Phi$ , $\Psi$ , and $\tau$ modes                                             | 6         |
| 1.3 Conservation of recursion degree                                                   | 6         |
| 1.4 Emergent symplectic structure                                                      | 7         |
| <b>2 Recursive State Counting and the UNNS Counting Form</b>                           | <b>8</b>  |
| 2.1 State counting and independence                                                    | 8         |
| 2.2 Closedness and potential one-form                                                  | 8         |
| 2.3 Flow compatibility                                                                 | 8         |
| <b>II The <math>\tau</math>-Field Dynamics</b>                                         | <b>9</b>  |
| <b>3 The <math>\tau</math>-Field as a Divergence-Free Evolution Field</b>              | <b>10</b> |
| 3.1 Definition of the $\tau$ -field                                                    | 10        |
| 3.2 Decomposition into $\Phi$ and $\Psi$ components                                    | 10        |
| 3.3 Tangent trajectories and admissible recursion flow                                 | 10        |
| <b>4 Recursive Geometry and the <math>\Phi</math>-<math>\Psi</math> Transition</b>     | <b>12</b> |
| 4.1 Geometry-dominant and spectrum-dominant recursion                                  | 12        |
| 4.2 Critical $\tau$ scale                                                              | 12        |
| 4.3 The $\Phi$ - $\Psi$ - $\tau$ cycle as structural recursion                         | 12        |
| 4.4 Higher-order variational structure                                                 | 13        |
| <b>III The Action Principle in the UNNS Substrate</b>                                  | <b>14</b> |
| <b>5 Action as Recursion Flux</b>                                                      | <b>15</b> |
| 5.1 Classical interpretation revisited                                                 | 15        |
| 5.2 Variation surfaces                                                                 | 15        |

|           |                                                                 |           |
|-----------|-----------------------------------------------------------------|-----------|
| 5.3       | Recursion flux through a variation surface                      | 16        |
| 5.4       | Stationarity condition                                          | 16        |
| <b>6</b>  | <b>The UNNS Action Integral and Its Structure</b>               | <b>17</b> |
| 6.1       | Local coordinate representation                                 | 17        |
| 6.2       | Effective UNNS Lagrangian                                       | 17        |
| 6.3       | Euler–Lagrange equations                                        | 18        |
| 6.4       | Hamiltonian reconstruction                                      | 18        |
| 6.5       | Pre-collapse variational domain                                 | 18        |
| <b>IV</b> | <b>Operator XII and Variational Collapse</b>                    | <b>19</b> |
| <b>7</b>  | <b>Operator XII: Collapse as Recursion Neutralization</b>       | <b>20</b> |
| 7.1       | Motivation                                                      | 20        |
| 7.2       | Definition of Operator XII                                      | 20        |
| 7.3       | Collapse without annihilation                                   | 21        |
| 7.4       | Collapse triggers                                               | 21        |
| 7.5       | Re-seeding recursion after collapse                             | 21        |
| <b>8</b>  | <b>Operator XII and Action Stationarity</b>                     | <b>22</b> |
| 8.1       | Degeneration of the variational domain                          | 22        |
| 8.2       | Effect on action variation                                      | 22        |
| 8.3       | Zero-flux under collapse                                        | 22        |
| 8.4       | Interpretation of collapse                                      | 23        |
| 8.5       | Recovery of variational structure                               | 23        |
| <b>V</b>  | <b>Applications and Examples</b>                                | <b>24</b> |
| <b>9</b>  | <b>Low-Dimensional Recursion Examples</b>                       | <b>25</b> |
| 9.1       | One-dimensional recursion example                               | 25        |
| 9.2       | Two-branch recursion example                                    | 25        |
| 9.3       | Interaction and bifurcation                                     | 26        |
| <b>10</b> | <b>Emergent Physical Theories</b>                               | <b>27</b> |
| 10.1      | Quantum-like regime (dominant $\Psi$ )                          | 27        |
| 10.2      | Geometric regime (dominant $\Phi$ )                             | 27        |
| 10.3      | Quantum–gravity crossover ( $\tau \approx \tau_{\text{crit}}$ ) | 28        |
| 10.4      | Role of Operator XII                                            | 28        |
| <b>VI</b> | <b>Appendices</b>                                               | <b>29</b> |
| <b>A</b>  | <b>Appendix A: Construction of the UNNS Counting Form</b>       | <b>30</b> |

|                                                                                               |           |
|-----------------------------------------------------------------------------------------------|-----------|
| <b>B Appendix B: Derivation of <math>\omega_{\text{UNNS}} = -d\theta_{\text{UNNS}}</math></b> | <b>31</b> |
| <b>C Appendix C: The Condition <math>\iota_{S_\tau} \omega_{\text{UNNS}} = 0</math></b>       | <b>32</b> |
| <b>D Appendix D: Variation Surfaces and Flux Integrals</b>                                    | <b>33</b> |
| <b>E Appendix E: Comparison With Hamiltonian Mechanics</b>                                    | <b>34</b> |
| <b>F Appendix F: Algebraic Properties of Operator XII</b>                                     | <b>35</b> |
| <b>G Appendix G: TikZ Code for the <math>\Phi-\Psi-\tau</math> Cycle</b>                      | <b>36</b> |

# Executive Summary

In classical mechanics the principle of stationary action is a compact way to express determinism, reversibility, and independence of degrees of freedom. The UNNS Substrate generalizes these ideas by showing that a divergence-free recursion field on a recursion manifold yields an exact two-form and an action functional whose stationary points coincide with the recursive flow.

This report formulates the  $\tau$ -field, the UNNS counting form, the recursion potential, and derives the action principle from the geometry of  $\Phi$ - $\Psi$ - $\tau$  cycling.

## Part I

# Foundations of the UNNS Substrate

# Chapter 1

## The $\Phi$ – $\Psi$ – $\tau$ Recursion Framework

### 1.1 Recursive states and the recursion manifold

We model the UNNS Substrate by a recursion manifold  $\mathcal{R}$ , whose points  $\mathbf{r}$  encode the state of recursion. Each state decomposes into

$$\mathbf{r} \sim (\Phi(\mathbf{r}), \Psi(\mathbf{r}), \tau(\mathbf{r})).$$

**Definition 1.1.** *A recursion manifold  $\mathcal{R}$  is a smooth manifold whose points represent recursive configurations. A recursion state carries geometric content ( $\Phi$ ), spectral content ( $\Psi$ ), and coupling strength  $\tau$ .*

### 1.2 The $\Phi$ , $\Psi$ , and $\tau$ modes

- $\Phi$  promotes geometric consolidation and curvature.
- $\Psi$  promotes coherence and spectral superposition.
- $\tau$  controls interaction between  $\Phi$  and  $\Psi$ .

The recursion flow is

$$\mathbf{S}_\tau = \mathbf{S}_{\tau\Phi} + \mathbf{S}_{\tau\Psi}.$$

### 1.3 Conservation of recursion degree

The recursion evolution field  $\mathbf{S}_\tau$  satisfies

$$\nabla \cdot \mathbf{S}_\tau = 0.$$

**Definition 1.2.** *A  $\tau$ -field is recursion-conserving if the flow preserves a recursion-volume form.*

This is the analogue of Liouville's theorem.

## 1.4 Emergent symplectic structure

A closed two-form  $\omega_{\text{UNNS}}$  counts recursion states and satisfies

$$\omega_{\text{UNNS}} = 0.$$

**Definition 1.3.** *A UNNS counting form  $\omega_{\text{UNNS}}$  is an antisymmetric, closed two-form that measures recursion across infinitesimal surfaces.*

There exists a recursion potential  $\theta_{\text{UNNS}}$  such that

$$\omega_{\text{UNNS}} = -\theta_{\text{UNNS}}.$$

## Chapter 2

# Recursive State Counting and the UNNS Counting Form

### 2.1 State counting and independence

Independence of recursion directions implies state-count factorization.

### 2.2 Closedness and potential one-form

In coordinates  $x^a$ :

$$\theta_{\text{UNNS}} = \theta_a dx^a, \quad \omega_{\text{UNNS}} = \frac{1}{2} \omega_{ab} dx^a \wedge dx^b.$$

### 2.3 Flow compatibility

The  $\tau$ -field satisfies

$$\iota_{S_\tau} \omega_{\text{UNNS}} = 0,$$

meaning the flow direction contributes no recursion count.

*Remark 2.1.* This is the recursion analogue of canonical Hamiltonian structure.

## Part II

# The $\tau$ -Field Dynamics

# Chapter 3

## The $\tau$ -Field as a Divergence-Free Evolution Field

### 3.1 Definition of the $\tau$ -field

**Definition 3.1.** *The  $\tau$ -field  $\tau$  is the recursion evolution vector field:*

$$\tau(\mathbf{r}) = \mathbf{S}_\tau(\mathbf{r}).$$

*It acts as the generator of recursion flow on  $\mathcal{R}$ .*

Its defining structural property is

$$\nabla \cdot \tau = 0,$$

expressing conservation of recursion states.

### 3.2 Decomposition into $\Phi$ and $\Psi$ components

The  $\tau$ -field splits naturally into two complementary components:

$$\tau = \tau_\Phi + \tau_\Psi.$$

- $\tau_\Phi$  drives geometric consolidation, curvature formation, and coarse-graining of recursion structure.
- $\tau_\Psi$  drives coherence, branching, and interference of fine-scale recursive structures.

This is the recursion-level analogue of the “geometric versus spectral” split in physics.

### 3.3 Tangent trajectories and admissible recursion flow

Let  $\gamma$  be a recursion trajectory and  $\gamma'$  a variation with same endpoints. Let  $\Sigma$  be the surface spanned between them.

**Definition 3.2.** A recursion trajectory  $\gamma$  is admissible if the recursion flux through any variation surface  $\Sigma$  satisfies

$$\int_{\Sigma} \omega_{\text{UNNS}}(\tau, \cdot) = 0.$$

**Proposition 3.3.** A trajectory is admissible if and only if it is everywhere tangent to the  $\tau$ -field:

$$\dot{\gamma}(s) \propto \tau(\gamma(s)).$$

*Proof.* If  $\gamma$  is tangent to  $\tau$ , then  $\tau$  lies in the tangent space of  $\gamma$  and therefore cannot cross the interior of any  $\Sigma$  spanning to a nearby variation. Thus the flux is zero. Conversely, if the flux through every variation vanishes,  $\tau$  cannot have any component transverse to  $\gamma$ ; hence  $\gamma$  must be tangent to it.  $\square$

This result is the recursion-substrate analogue of “solutions to the equations of motion are integral curves of the Hamiltonian vector field”.

## Chapter 4

# Recursive Geometry and the $\Phi$ – $\Psi$ Transition

### 4.1 Geometry-dominant and spectrum-dominant recursion

We describe two regimes:

#### Geometry-dominant regime

When

$$\|\tau_\Phi\| \gg \|\tau_\Psi\|,$$

recursive deformation is dominated by geometric accumulation, producing coarse, curvature-like structures.

#### Spectrum-dominant regime

When

$$\|\tau_\Psi\| \gg \|\tau_\Phi\|,$$

recursion supports long-lived coherence and branching, analogous to quantum interference.

### 4.2 Critical $\tau$ scale

**Definition 4.1.** A critical  $\tau$ -scale  $\tau_{\text{crit}}$  is a scale at which geometric and spectral recursion have comparable magnitude:

$$\|\tau_\Phi\| \approx \|\tau_\Psi\|.$$

At  $\tau_{\text{crit}}$ , recursion enters an intermediate regime where coherence and geometric structure influence each other. This is the **UNNS analogue of the quantum–gravity crossover**.

### 4.3 The $\Phi$ – $\Psi$ – $\tau$ cycle as structural recursion

The recursive cycle is:

$$\Phi \longrightarrow \Psi \longrightarrow \tau \longrightarrow \Phi.$$

Each transition updates the recursive structure:

- $\Phi \rightarrow \Psi$ : geometric patterns become spectrally active.
- $\Psi \rightarrow \tau$ : coherence injects coupling tension.
- $\tau \rightarrow \Phi$ : coupling resolves into coarse geometry.

This is the “meta-dynamical” structure behind the variational principle.

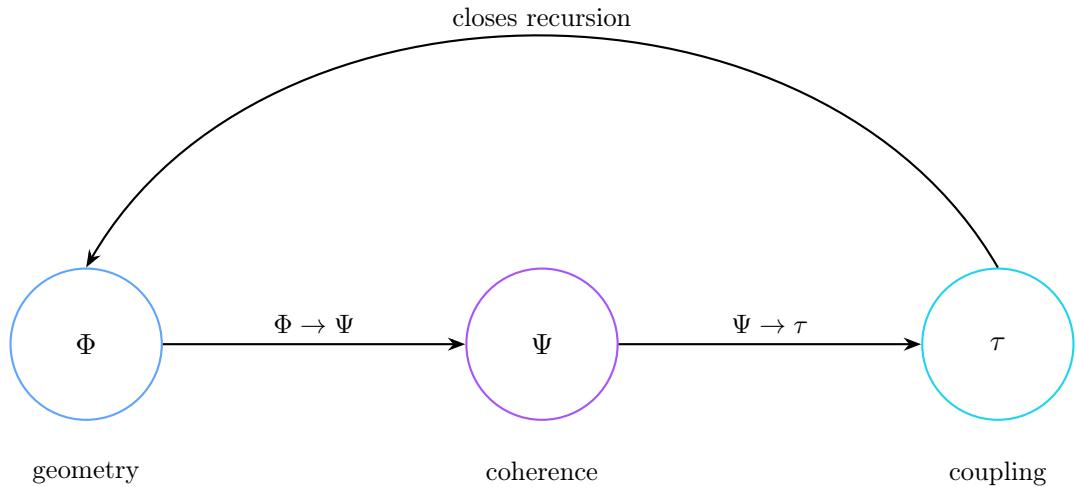


Figure 4.1: The  $\Phi$ - $\Psi$ - $\tau$  recursion cycle.

## 4.4 Higher-order variational structure

The closedness condition

$$\omega_{\text{UNNS}} = 0,$$

means that the  $\Phi$ - $\Psi$ - $\tau$  updates preserve recursion count. Each update changes  $\omega_{\text{UNNS}}$  and  $\theta_{\text{UNNS}}$  coherently, maintaining compatibility with  $\tau$ .

Thus, the entire  $-\tau$  cycle is a **higher-order variational operator**: it determines the admissible variations in the UNNS action principle developed in Part III.

## Part III

# The Action Principle in the UNNS Substrate

# Chapter 5

## Action as Recursion Flux

### 5.1 Classical interpretation revisited

In classical mechanics, the action functional

$$S[\gamma] = \int_{\gamma} L dt$$

is traditionally associated with a quantity to be extremized. Recent work (e.g., Carcassi–Aidala 2023) shows that its variation has a geometric interpretation: the change in action between two nearby paths equals the flow of a divergence-free vector field through the surface they span.

The UNNS Substrate provides a more fundamental version of this idea.

Here:

- the recursion states lie in the manifold  $\mathcal{R}$ ,
- recursion flow is generated by the  $\tau$ -field  $\mathbf{S}_\tau$ ,
- state-counting is encoded by the closed two-form  $\omega_{\text{UNNS}}$ ,
- and a recursion potential  $\theta_{\text{UNNS}}$  satisfies  $\omega_{\text{UNNS}} = -d\theta_{\text{UNNS}}$ .

### 5.2 Variation surfaces

Let  $\gamma$  be a recursion trajectory from  $\mathbf{r}_1$  to  $\mathbf{r}_2$ . Let  $\gamma'$  be a nearby curve with the same endpoints. Together they bound a surface  $\Sigma$  in  $\mathcal{R}$ .

We adopt the usual variational notation:

- $\gamma$  = physical (candidate) recursion trajectory,
- $\gamma'$  = varied trajectory,
- $\Sigma$  = surface spanned between them.

### 5.3 Recursion flux through a variation surface

**Definition 5.1.** *The recursion flux through a variation surface  $\Sigma$  is*

$$\Phi_{\text{flux}}(\Sigma) = \int_{\Sigma} \omega_{\text{UNNS}}(\mathbf{S}_{\tau}, \cdot).$$

This measures how much recursion crosses the surface when flowing along  $\mathbf{S}_{\tau}$ .

Since  $\mathbf{S}_{\tau}$  is divergence-free with respect to  $\omega_{\text{UNNS}}$ , the flux depends only on the boundary of  $\Sigma$ .

**Proposition 5.2.** *If  $\omega_{\text{UNNS}} = -d\theta_{\text{UNNS}}$ , then*

$$\Phi_{\text{flux}}(\Sigma) = \int_{\gamma} \theta_{\text{UNNS}} - \int_{\gamma'} \theta_{\text{UNNS}}.$$

*Proof.* Apply Stokes' Theorem:

$$\int_{\Sigma} \omega_{\text{UNNS}} = - \int_{\Sigma} d\theta_{\text{UNNS}} = - \int_{\partial\Sigma} \theta_{\text{UNNS}}.$$

Since  $\partial\Sigma = \gamma - \gamma'$ , the result follows.  $\square$

Thus, the flux equals the variation of a path integral.

### 5.4 Stationarity condition

We define the UNNS action as:

**Definition 5.3.** *The UNNS action functional is*

$$\mathcal{A}_{\text{UNNS}}[\gamma] = \int_{\gamma} \theta_{\text{UNNS}}.$$

Its variation is

$$\delta\mathcal{A}_{\text{UNNS}}[\gamma] = \Phi_{\text{flux}}(\Sigma).$$

**Theorem 5.4.** *A recursion trajectory  $\gamma$  is physical (admissible) if and only if*

$$\delta\mathcal{A}_{\text{UNNS}}[\gamma] = 0 \iff \Phi_{\text{flux}}(\Sigma) = 0,$$

for all variation surfaces  $\Sigma$  with fixed endpoints.

*Proof.* Direct substitution of the flux formula into the definition of the variation: the action is stationary exactly when no recursion crosses the variation surface, i.e., when the flow is tangent to  $\gamma$ .  $\square$

This is the UNNS variational principle:

$$\mathbf{S}_{\tau} \text{ tangent to } \gamma.$$

## Chapter 6

# The UNNS Action Integral and Its Structure

### 6.1 Local coordinate representation

Choose local recursion coordinates

$$x^a = (q^i, p_i, t),$$

and write

$$\theta_{\text{UNNS}} = \theta_a(x) dx^a.$$

Then the UNNS action along a parametrized curve  $x^a(s)$  is

$$\mathcal{A}_{\text{UNNS}}[\gamma] = \int_{s_1}^{s_2} \theta_a(x(s)) \dot{x}^a(s) ds.$$

### 6.2 Effective UNNS Lagrangian

If a time-like coordinate  $t$  is singled out (not physical time, but a recursion parameter), we may decompose:

$$\theta_{\text{UNNS}} = p_i dq^i - H_{\text{UNNS}} dt.$$

Then

$$\mathcal{A}_{\text{UNNS}}[\gamma] = \int (p_i \dot{q}^i - H_{\text{UNNS}}) dt.$$

This yields the effective Lagrangian:

$$L_{\text{UNNS}}(q, \dot{q}, t) = p_i(q, \dot{q}, t) \dot{q}^i - H_{\text{UNNS}}.$$

**Important:** In the UNNS picture,  $(q^i, p_i)$  are NOT positions and momenta in spacetime, but recursion coordinates.

### 6.3 Euler–Lagrange equations

The stationary action principle leads to Euler–Lagrange equations:

$$\frac{d}{dt} \left( \frac{\partial L_{\text{UNNS}}}{\partial \dot{q}^i} \right) - \frac{\partial L_{\text{UNNS}}}{\partial q^i} = 0.$$

They reproduce the recursion flow equations:

$$\dot{x}^a = \mathbf{S}_\tau^a(x).$$

### 6.4 Hamiltonian reconstruction

Given  $\mathbf{S}_\tau$  and  $\omega_{\text{UNNS}}$ , one recovers  $H_{\text{UNNS}}$  by solving

$$\omega_{\text{UNNS}ab} \mathbf{S}_\tau^b = \partial_a H_{\text{UNNS}}.$$

This is the recursion analogue of Hamilton’s equations.

Thus the geometry of  $\omega_{\text{UNNS}}$  and  $\theta_{\text{UNNS}}$  *defines* the dynamics, not the other way around.

### 6.5 Pre-collapse variational domain

Before Operator XII (collapse) acts, the variational domain is full: all variations of  $\gamma$  with fixed endpoints are allowed.

After collapse, only variations respecting  $\mathcal{O}_{\text{XII}}$  are admissible. This will be treated fully in Part IV.

## Part IV

# Operator XII and Variational Collapse

# Chapter 7

## Operator XII: Collapse as Recursion Neutralization

### 7.1 Motivation

Within the UNNS grammar, Operator XII completes the recursive operator set. Its conceptual purpose is to:

- neutralize unresolved recursion tension between  $\Phi$  and  $\Psi$ ,
- collapse excess recursion branches without destroying recursion count,
- reduce the allowed variational domain of recursion trajectories,
- re-seed recursion at a new effective recursion level.

This is not “collapse” in the quantum measurement sense, nor annihilation of recursion. It is a *structural reset* of recursion geometry.

### 7.2 Definition of Operator XII

**Definition 7.1.** *Operator XII, denoted  $\mathcal{O}_{\text{XII}}$ , is a map*

$$\mathcal{O}_{\text{XII}} : \mathcal{R} \rightarrow \mathcal{R}$$

*such that:*

1.  $\mathcal{O}_{\text{XII}}$  preserves total recursion count, i.e. recursive volume is invariant.
2.  $\mathcal{O}_{\text{XII}}$  projects  $\mathcal{R}$  onto a submanifold  $\mathcal{R}' \subset \mathcal{R}$ .
3.  $\mathcal{O}_{\text{XII}}$  induces a new  $\tau$ -field  $\tau' : \mathcal{R}' \rightarrow T\mathcal{R}'$ .

Thus  $\mathcal{O}_{\text{XII}}$  eliminates internal degrees of freedom that cannot evolve consistently under the current  $\Phi$ – $\Psi$ – $\tau$  cycle.

### 7.3 Collapse without annihilation

Let  $V$  denote recursive volume (state count). Then

$$V(\mathcal{R}') = V(\mathcal{R}).$$

Collapse does not remove recursion; it reorganizes it. It compresses the recursion state manifold along specific directions, reducing complexity while maintaining state count.

### 7.4 Collapse triggers

Operator XII is invoked when:

- $\Phi$  and  $\Psi$  produce incompatible variational directions,
- the  $\tau$ -field flow becomes tangent to multiple distinct surfaces,
- the variational domain becomes non-integrable,
- recursion tension exceeds a threshold determined by  $\tau$ .

Mathematically, collapse is triggered when the kernel of  $\omega_{\text{UNNS}}$  enlarges such that admissible variations are no longer independent.

### 7.5 Re-seeding recursion after collapse

After applying  $\mathcal{O}_{\text{XII}}$ :

- recursion is transferred to  $\mathcal{R}'$ ,
- $\omega_{\text{UNNS}}$  is restricted to  $\mathcal{R}'$ ,
- a new recursion potential  $\theta'_{\text{UNNS}}$  satisfies

$$\omega'_{\text{UNNS}} = -d\theta'_{\text{UNNS}}.$$

- a new  $\tau$ -field  $\tau'$  governs post-collapse evolution.

This provides a natural UNNS mechanism for *phase switching* between recursion regimes (e.g., quantum-like to geometric-like).

## Chapter 8

# Operator XII and Action Stationarity

### 8.1 Degeneration of the variational domain

Before collapse, the variational domain  $\mathcal{V}$  consists of all smooth curves connecting fixed endpoints. After collapse,  $\mathcal{V}$  shrinks to

$$\mathcal{V}' = \{\gamma' : \gamma' \text{ obeys constraints induced by } \mathcal{O}_{\text{XII}}\}.$$

Variations that would move  $\gamma$  out of  $\mathcal{R}'$  are forbidden.

### 8.2 Effect on action variation

Originally,

$$\delta \mathcal{A}_{\text{UNNS}}[\gamma] = \int_{\gamma} \theta_{\text{UNNS}} - \int_{\gamma'} \theta_{\text{UNNS}}.$$

After collapse, this becomes

$$\delta' \mathcal{A}_{\text{UNNS}}[\gamma] = \int_{\gamma} \theta'_{\text{UNNS}} - \int_{\gamma'} \theta'_{\text{UNNS}},$$

but only variations  $\gamma'$  respecting  $\mathcal{O}_{\text{XII}}$  are permitted.

The flux expression still holds:

$$\delta' \mathcal{A}_{\text{UNNS}}[\gamma] = \int_{\Sigma} \omega'_{\text{UNNS}}(\tau', \cdot),$$

but  $\Sigma$  must lie entirely inside  $\mathcal{R}'$ .

### 8.3 Zero-flux under collapse

The UNNS stationary action condition becomes:

$$\delta' \mathcal{A}_{\text{UNNS}}[\gamma] = 0 \iff \int_{\Sigma} \omega'_{\text{UNNS}}(\tau', \cdot) = 0,$$

for all *collapse-compatible*  $\Sigma$ .

Thus, the physical trajectories after collapse are integral curves of  $\tau'$  instead of  $\tau$ .

## 8.4 Interpretation of collapse

Collapse can be interpreted as:

- a constraint enforcement mechanism,
- a projection of recursion geometry,
- a reduction of variational freedom,
- a phase-reset in recursion dynamics.

## 8.5 Recovery of variational structure

After collapse, the action principle is regained, but on a simpler recursion manifold:

$$\mathcal{R} \xrightarrow{\mathcal{O}_{\text{XII}}} \mathcal{R}',$$

with an updated symplectic-like structure:

$$\omega'_{\text{UNNS}}, \quad \theta'_{\text{UNNS}}, \quad \tau'.$$

This concludes the formal treatment of Operator XII as a geometric variational reset mechanism.

## Part V

# Applications and Examples

# Chapter 9

## Low-Dimensional Recursion Examples

### 9.1 One-dimensional recursion example

Let  $x$  be a single recursion coordinate. Suppose recursion evolves by

$$\dot{x} = f(x).$$

In this trivial case:

- The recursion manifold is  $\mathcal{R} = \mathbb{R}$ .
- The counting form reduces to  $\omega_{\text{UNNS}} = \omega(x) dx \wedge dt$ .
- The recursion potential may be written as  $\theta_{\text{UNNS}} = \theta(x) dx - H(x) dt$ , where  $\theta' = -\omega$ .

The UNNS action becomes:

$$\mathcal{A}_{\text{UNNS}}[\gamma] = \int (\theta(x)\dot{x} - H(x)) dt.$$

Stationary action reproduces  $\dot{x} = f(x)$ .

This shows that *even in one dimension*, the UNNS variational structure collapses to the classical form when we project recursion onto a single degree of freedom.

### 9.2 Two-branch recursion example

Let recursive states be labelled by  $(x, y)$ . Define the counting form as:

$$\omega_{\text{UNNS}} = \omega(x, y) dx \wedge dy.$$

Define a recursion-flow field:

$$\mathbf{S}_\tau = (f(x, y), g(x, y)).$$

The physical trajectories satisfy:

$$\omega_{\text{UNNS}}(\mathbf{S}_\tau, \cdot) = 0.$$

Explicitly:

$$\omega(x, y) (f \, dy - g \, dx) = 0.$$

This gives the recursion differential equation:

$$\frac{dy}{dx} = \frac{g(x, y)}{f(x, y)}.$$

Thus, even without any physical interpretation, the variational principle recovers the recursion-flow curves.

### 9.3 Interaction and bifurcation

If  $f(x, y)$  or  $g(x, y)$  change sign or vanish, recursion-flow bifurcations occur. These generate recursive analogues of:

- fixed points,
- attractors,
- separatrices,
- interference nodes.

All of these are resolved by  $\Phi$ – $\Psi$ – $\tau$  structure.

## Chapter 10

# Emergent Physical Theories

### 10.1 Quantum-like regime (dominant $\Psi$ )

When  $\|\tau_\Psi\| \gg \|\tau_\Phi\|$ :

- recursion branches remain coherent,
- interference persists across recursion depth,
- $\omega_{\text{UNNS}}$  becomes strongly spectral,
- $\theta_{\text{UNNS}}$  resembles a phase-like one-form.

Effective projections into spacetime-like variables exhibit features of quantum mechanics:

- superposition,
- interference,
- phase evolution,
- decoherence only when  $\tau$  increases.

### 10.2 Geometric regime (dominant $\Phi$ )

When  $\|\tau_\Phi\| \gg \|\tau_\Psi\|$ :

- recursion collapses into geometric sheets,
- $\omega_{\text{UNNS}}$  becomes curvature-like,
- $\theta_{\text{UNNS}}$  acts as a geometric connection form,
- trajectories resemble geodesics of an emergent metric.

The effective theory projects to classical geometry:

- gravitational curvature,
- classical causal structure,
- minimal interference.

### 10.3 Quantum–gravity crossover ( $\tau \approx \tau_{\text{crit}}$ )

At the critical  $\tau$  scale:

- geometry and coherence compete,
- recursion is multidimensional,
- $\omega_{\text{UNNS}}$  encodes mixed curvature/coherence states,
- the variational principle requires the full UNNS form.

### 10.4 Role of Operator XII

Operator XII mediates transitions between recursion regimes:

- collapse of coherence  $\rightarrow$  geometric phase,
- collapse of geometry  $\rightarrow$  coherent phase,
- collapse of variational domain  $\rightarrow$  new recursion sector.

This provides a natural UNNS mechanism for phase transitions that resemble:

- quantum measurement,
- classicalization,
- decoherence,
- geometrogenesis.

# Part VI

# Appendices

## Appendix A

# Appendix A: Construction of the UNNS Counting Form

We derive  $\omega_{\text{UNNS}}$  from:

- independence of recursion directions,
- recursion conservation,
- compatibility with  $\Phi$ – $\Psi$ – $\tau$  cycles.

Choose recursion coordinates  $x^a$ . Define:

$$\omega_{\text{UNNS}} = \frac{1}{2} \omega_{ab} dx^a \wedge dx^b.$$

Closedness:

$$d\omega_{\text{UNNS}} = 0 \quad \Rightarrow \quad \partial_a \omega_{bc} + \partial_b \omega_{ca} + \partial_c \omega_{ab} = 0.$$

This ensures that recursion count is consistent under changes of surface.

## Appendix B

### Appendix B: Derivation of $\omega_{\text{UNNS}} = -d\theta_{\text{UNNS}}$

In a contractible region, closedness implies exactness:

- Poincaré lemma: every closed form is locally exact.
- Thus  $\omega_{\text{UNNS}} = -d\theta_{\text{UNNS}}$  for some one-form  $\theta_{\text{UNNS}}$ .

$\theta_{\text{UNNS}}$  is not unique:

$$\theta_{\text{UNNS}} \rightarrow \theta_{\text{UNNS}} + d\lambda$$

does not change  $\omega_{\text{UNNS}}$ .

This freedom corresponds to choice of Lagrangian gauge.

## Appendix C

### Appendix C: The Condition

$$\iota_{\mathbf{S}_\tau} \omega_{\text{UNNS}} = 0$$

The interior product identity:

$$\iota_{\mathbf{S}_\tau} \omega_{\text{UNNS}} = 0$$

means that  $\mathbf{S}_\tau$  is always tangent to surfaces of constant recursion.

Equivalently:

$$\omega_{\text{UNNS}}{}_{ab} \mathbf{S}_\tau^b = 0.$$

This expresses that recursion does not flow across recursion-count surfaces.

## Appendix D

# Appendix D: Variation Surfaces and Flux Integrals

Let  $\gamma$  and  $\gamma'$  bound a surface  $\Sigma$ .

Flux:

$$\Phi_{\text{flux}}(\Sigma) = \int_{\Sigma} \omega_{\text{UNNS}}(\mathbf{S}_\tau, \cdot).$$

Use the identity:

$$\omega_{\text{UNNS}}(\mathbf{S}_\tau, \cdot) = -d\theta_{\text{UNNS}}(\mathbf{S}_\tau, \cdot)$$

and Stokes' Theorem:

$$\int_{\Sigma} d\theta_{\text{UNNS}} = \int_{\partial\Sigma} \theta_{\text{UNNS}}.$$

## Appendix E

# Appendix E: Comparison With Hamiltonian Mechanics

If recursion coordinates are split into  $(q^i, p_i, t)$ :

$$\theta_{\text{UNNS}} = p_i dq^i - H_{\text{UNNS}} dt.$$

Then:

$$\omega_{\text{UNNS}} = dq^i \wedge dp_i - dH_{\text{UNNS}} \wedge dt.$$

If  $t$ -slices are considered, this reduces to the classical symplectic form and Hamilton's equations.

Thus, Hamiltonian mechanics is a *projection* of UNNS recursion.

## Appendix F

# Appendix F: Algebraic Properties of Operator XII

Operator XII satisfies:

- Idempotence on restricted sectors:

$$\mathcal{O}_{\text{XII}}(\mathcal{O}_{\text{XII}}(r)) = \mathcal{O}_{\text{XII}}(r).$$

- Preservation of recursion count:

$$\int_{\mathcal{R}'} \omega'_{\text{UNNS}} = \int_{\mathcal{R}} \omega_{\text{UNNS}}.$$

- Compatibility with  $\tau$ -flow:

$$\mathcal{O}_{\text{XII}*}(\mathbf{S}_\tau) = \mathbf{S}'_\tau.$$

## Appendix G

### Appendix G: TikZ Code for the $\Phi$ – $\Psi$ – $\tau$ Cycle

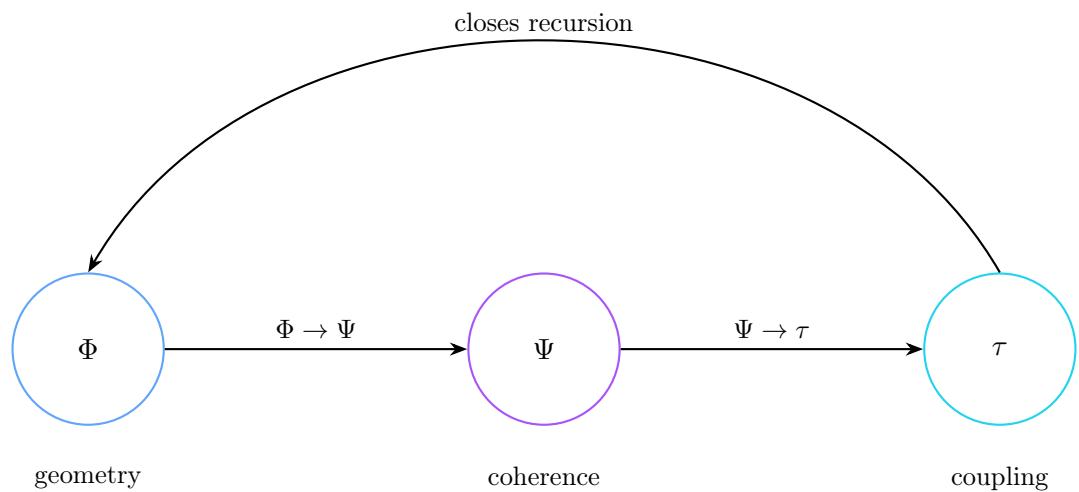


Figure G.1: Diagram used throughout the monograph.

# Bibliography

- [1] G. Carcassi and C. Aidala, *Geometric and physical interpretation of the action principle*, Scientific Reports 13, 12138 (2023).
- [2] UNNS Research Collective, *Operator XII: Collapse and the Completion of the Recursive Grammar*, Internal report (2025).
- [3] UNNS Research Collective, *The  $\tau$ -Field and Recursive Dynamics in the UNNS Substrate*, Internal notes (2025).