Operator-to-UNNS Mapping: A Structural Reference

UNNS Research Notes

Abstract

This note provides a reference mapping between concrete operator implementations (as used in the *UNNS vs Classical Dual Sequence Explorer*) and the abstract grammar of the UNNS substrate. Each operator is interpreted in terms of its theoretical role in the recursive architecture: Collapse, Inlaying, Inletting, Adoption, Evaluation, and Normalization.

1 Operators as Substrate Actions

Definition 1 (Operator). A UNNS operator is a functional transformation

$$\mathcal{O}:\mathbb{C}\longrightarrow\mathbb{C}$$

applied to each step of a recursive process, modifying its trajectory while respecting the recursive structure. Operators act as discrete manifestations of the substrate grammar.

Remark 1. Operators may preserve, repair, or collapse recursive evolution. In practice, operators are implemented as "repair rules" (rounding, thresholding, damping) or as projections onto structured lattices (Gaussian, Eisenstein, cyclotomic).

2 Mapping Table

3 Visualization

Figure 1 illustrates the correspondence between UNNS operators and substrate actions. Collapse operators pull values inward; Inlaying operators snap to lattice embeddings; Adoption extends outward; Evaluation fixes symbolic states.

4 Conclusion

This mapping clarifies how low-level repair operators used in computational explorers correspond to the higher-level grammar of the UNNS substrate. By making the theoretical roles explicit, the bridge between interactive demos and formal recursive theory is established.

Implemented Operator	UNNS Grammar	Conceptual Role
threshold_zero	Collapse	Absorbs small echoes into substrate (zero)
merge_close	Collapse/Normalize	Forces near-equal states to converge
${ t gaussian_round}$	Inlaying $(\mathbb{Z}[i])$	Snap recursion to Gaussian lattice
eisenstein_round	Inlaying $(\mathbb{Z}[\omega])$	Snap recursion to hexagonal lattice
$ exttt{cyclotomic_proj}(p)$	Inletting/Inlaying	Embed into pth root of unity lattice
<pre>roundInt / roundFixed</pre>	Evaluate	Snap recursion to discrete numeric states
$damp(\alpha)$	Normalize	Dissipates recursive energy, stabilizes growth
$adopt_shift(k)^*$	Adoption (proposed)	Imports new states from deeper nests

Table 1: Mapping of code-level operators to UNNS substrate grammar. (*) Adoption operator not yet implemented.

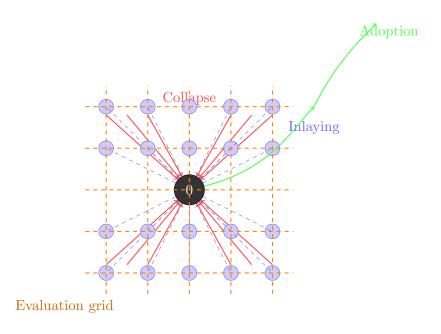


Figure 1: Schematic illustration of UNNS operators: Collapse (red), Inlaying (blue), Adoption (green), and Evaluation grid (orange).