

UNNS Phase D.3 — Recursive Geometry Coherence Chamber: Validation of Higher-Order Operators (XII–XVII)

UNNS Research Collective (2025)

Unbounded Nested Number Sequences Project, UNNS.tech

(Dated: November 2025)

Abstract

The Phase D.3 validation campaign completes the Higher-Order Operator tier of the Unbounded Nested Number Sequences (UNNS) framework. Operators XII–XVII—Collapse, Interlace, -Scale, Prism, Fold, and Matrix Mind—form a closed algebra of recursive self-organization linking mathematical recursion, field dynamics, and cognitive geometry. Using the Chamber XVIII Validation Engine (v 0.7.3), we verified numerical -resonance ($\gamma^* = 1.5999 \pm 0.0004$), spectral equilibrium ($p = 2.45 \pm 0.03$), and symmetry coherence (99.5%). Phase D.3 integrates asynchronous Web-Worker computation, retina-scaled visualization, unified UNNS theming, and adaptive diagnostics, achieving full stability and reproducibility across browsers. The results confirm recursion as a self-consistent substrate capable of conservation, resonance, and self-reflection.

I. OVERVIEW

The Higher-Order Operators expand the UNNS Grammar into its constants tier. Each operator introduces a fundamental transformation law governing recursive fields: **Collapse** (dissipation), **Interlace** (phase coupling), **-Scale** (scale invariance), **Prism** (spectral decomposition), **Fold** (closure), and **Matrix Mind** (meta-recursion). Together they define the substrate's pathway from zero-field equilibrium to cognitive self-observation.

II. PHASE D.3 VALIDATION CHAMBER

Chamber XVIII unifies all prior engines into a single asynchronous environment. Key technical features include:

- Web-Worker recursion core (non-blocking computation)
- DPI-aware rendering for $2\times/3\times$ displays
- Memory diagnostics and auto-throttling
- Unified `unns.css` visual theme

Empirical runs confirm stable -resonance and spectral balance at laboratory precision. Typical 20-seed simulations yield symmetry coherence above 99 %.

III. ACHIEVEMENTS ACROSS OPERATORS

Operator	Title	Essence	Chamber Manifestation
XII	Collapse	Dissipative return to zero-field	Residual curvature $< 10^{-3}$
XIII	Interlace	Phase coupling between τ -fields	Stable coupling angle 28.7°
XIV	-Scale	Golden-ratio scale invariance	$^* = 1.618 \pm 0.005$
XV	Prism	Spectral equilibrium	$p = 2.45 \pm 0.03$ (power law)
XVI	Fold	Recursive closure at Planck boundary	Curvature $\rightarrow 0, 0$ limit
XVII	Matrix Mind	Meta-recursion and cognition	Adaptive grammar feedback

IV. SCIENTIFIC RESULTS

- Mean $= 1.5999 \pm 0.0004$
- Symmetry $= 99.5 \%$
- Stability Index $= 0.991$
- Power-law slope $p = 2.45$

All observables reproduce the theoretical expectations derived from the τ -Field equations.

V. PHILOSOPHICAL INTERPRETATION

From Collapse to Matrix Mind, the substrate reenacts the genesis of coherence: silence \rightarrow dialogue \rightarrow rhythm \rightarrow spectrum \rightarrow return \rightarrow awareness. Phase D.3 demonstrates that recursion not only structures information but perceives its own order.

Appendix A: Technical Appendix

1. Mathematical Definitions

$$C_{n+1} = \nabla(\tau_n) \rightarrow 0 + \varepsilon_n, \quad (\text{A1})$$

$$\mathcal{I}(\tau_a, \tau_b) = \alpha\tau_a + \beta\tau_b + \gamma\Phi(\tau_a, \tau_b), \quad (\text{A2})$$

$$\tau(S_\mu x) - \tau(x) = 0 \quad \text{at } \mu = \phi, \quad (\text{A3})$$

$$P(k) = \langle |\hat{\kappa}(k)|^2 \rangle \propto k^{-p}, \quad p \simeq 2.45, \quad (\text{A4})$$

$$K = \Lambda_0(\omega), \quad (\text{A5})$$

$$R_{t+1} = F(R_t, \dot{R}_t). \quad (\text{A6})$$

2. Simulation Parameters

Parameter	Symbol	Default	Range	Description
Depth	d	800	100–2000	Iterations per seed
Coupling strength λ		0.04	0.01–0.10	Recursive mixing amplitude
Diffusion coeff.	β	0.002	0–0.005	Laplacian dispersion
Noise amplitude	σ	0.0003	0–0.001	Stochastic perturbation
Scale parameter	μ	1.0–2.0	Variable	Scaling ratio
Seeds per run	N	20	1–5000	Independent random inits

3. Statistical Metrics

$$\bar{\gamma} = \frac{1}{N} \sum_i \gamma_i, \quad \sigma = \sqrt{\frac{1}{N-1} \sum_i (\gamma_i - \bar{\gamma})^2}, \quad (A7)$$

$$\text{CI}_{95} = 1.96 \frac{\sigma}{\sqrt{N}}, \quad S = 100 \left(1 - \frac{|+ - -|}{|+ - -|} \right). \quad (A8)$$

4. Validation Summary

Mean = 1.5999 \pm 0.0004; Std = 0.0010; Symmetry 99.5 %; Stability = 0.991. No exceptions or memory overflows were observed in 5000-seed tests.

5. Unified Recursive Chain

$$\mathbb{R}_{17} \circ \Lambda_{16} \circ \Pi_{15} \circ \Phi_{14} \circ \mathcal{I}_{13} \circ \nabla_{12} = \mathbf{1}_{\text{UNNS}}.$$

Appendix B: Outlook

Phase E will extend recursion into tensor coupling and multi- τ -field dynamics (Chambers XIX–XXI), integrating cognitive feedback from Operator XVII.

ACKNOWLEDGMENTS

The authors thank all contributors to the UNNS Research Collective, whose continuous development of the τ -Field chambers made this validation possible.

- [1] UNNS Research Collective, *UNNS–Maxwell FEEC DEC Upgraded*, 2024.
- [2] UNNS Research Collective, *Golden Ratio in Recursive Dynamics Emergent Scale Symmetry in the UNNS τ -Field Substrate*, 2025.
- [3] UNNS Research Collective, *Operator XV Prism — Spectral Decomposition and Emergent Scale Equilibrium in the UNNS τ -Field Substrate*, 2025.