Recursive MCMC: Complete UNNS Laboratory

Information → Curvature • Computation → Recursion • Mixing → Harmony

κ

Algorithm Comparison

Random Walk

Accept: 0%
ESSκ: 0
Moves: 0

τon-RHMC

Accept: 0%
ESSκ: 0
Depth: n=0

Klein-Flip

Accept: 0%
ESSκ: 0
Flips: 0

Controls

Iterations: 0

Recursive Harmony

ΔHr drift: 0.000
Curvature κ: 0.000
Harmony: Balanced

Full Diagnostics

Random Walk Metropolis
Accept: 0%
ESS: 0%
ESSκ: 0%
Depth n: 0
τon-RHMC
Accept: 0%
ESS: 0%
ESSκ: 0%
Depth n: 0
Klein-Flip
Accept: 0%
ESS: 0%
ESSκ: 0%
Depth n: 0
Flips: 0

Paper Equations

Eq (3): G(x,n) = I + α F(τ)F(τ)ᵀ
Eq (5): π(z)K(z,dz') = π(z')K(z',dz)
Eq (6): E[Hr(n') - Hr(n) | z] = 0
Eq (7): λ₁(L) ≳ c₁κ → mixing rate
Implementation: Eq(3) via getMetric() • Eq(5) via detailed balance • Eq(6) via recursive entropy monitor • Eq(7) via curvature-mixing feedback